SVM classifier for face recognition based on unconstrained correlation filter

Pradipta K. Banerjee, Jayanta K. Chandra, A. K. Datta
{"title":"SVM classifier for face recognition based on unconstrained correlation filter","authors":"Pradipta K. Banerjee, Jayanta K. Chandra, A. K. Datta","doi":"10.1109/ICSIPA.2009.5478663","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel method of face recognition technique using a combination of unconstrained correlation filter and support vector machine. The unconstrained minimum average correlation energy (UMACE) filter generates a recognition parameter based on peak to side lobe ratio (PSR). Instead of training the support vector machine by the face image for classification, the PSR values from a set of UMACE filters is used to train the SVM. The proposed technique is tested with Cropped Yale B illumination database and the method shows significant reduction in error rate compared to classical UMACE filter based technique.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a novel method of face recognition technique using a combination of unconstrained correlation filter and support vector machine. The unconstrained minimum average correlation energy (UMACE) filter generates a recognition parameter based on peak to side lobe ratio (PSR). Instead of training the support vector machine by the face image for classification, the PSR values from a set of UMACE filters is used to train the SVM. The proposed technique is tested with Cropped Yale B illumination database and the method shows significant reduction in error rate compared to classical UMACE filter based technique.
基于无约束相关滤波的SVM人脸识别分类器
本文提出了一种结合无约束相关滤波和支持向量机的人脸识别新方法。无约束最小平均相关能(UMACE)滤波器根据峰值旁瓣比(PSR)产生识别参数。该方法不是使用人脸图像训练支持向量机进行分类,而是使用一组UMACE滤波器的PSR值来训练支持向量机。在裁剪过的耶鲁B光照数据库中进行了测试,与传统的基于UMACE滤波的方法相比,该方法的错误率显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信