Development of vegetation mapping with deep convolutional neural network

Sae-Han Suh, Ji-Eun Jhang, Kwanghee Won, Sung Y. Shin, C. Sung
{"title":"Development of vegetation mapping with deep convolutional neural network","authors":"Sae-Han Suh, Ji-Eun Jhang, Kwanghee Won, Sung Y. Shin, C. Sung","doi":"10.1145/3264746.3264791","DOIUrl":null,"url":null,"abstract":"The Precision Agriculture (PA) plays a crucial part in the agricultural industry about improving the decision-making process. It aims to optimally allocate the resources to maintain the sustainable productivity of farmland and reduce the use of chemical compounds. [17] However, the on-site inspection of vegetations often falls to researchers' trained eye and experience, when it deals with the identification of the non-crop vegetations. Deep Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual classification. Although CNN outperforms the other traditional classifiers, such as Support Vector Machine, it is still in question whether CNN can be deployable in an industrial environment. In this paper, we conducted a study on the feasibility of CNN for Vegetation Mapping on lawn inspection for weeds. We would like to study the possibility of expanding the concept to the on-site, near realtime, crop site inspections, by evaluating the generated results.","PeriodicalId":186790,"journal":{"name":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264746.3264791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Precision Agriculture (PA) plays a crucial part in the agricultural industry about improving the decision-making process. It aims to optimally allocate the resources to maintain the sustainable productivity of farmland and reduce the use of chemical compounds. [17] However, the on-site inspection of vegetations often falls to researchers' trained eye and experience, when it deals with the identification of the non-crop vegetations. Deep Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual classification. Although CNN outperforms the other traditional classifiers, such as Support Vector Machine, it is still in question whether CNN can be deployable in an industrial environment. In this paper, we conducted a study on the feasibility of CNN for Vegetation Mapping on lawn inspection for weeds. We would like to study the possibility of expanding the concept to the on-site, near realtime, crop site inspections, by evaluating the generated results.
基于深度卷积神经网络的植被制图研究进展
精准农业在改善农业决策过程中起着至关重要的作用。它的目的是优化资源分配,以保持农田的可持续生产力和减少化学化合物的使用。[17]然而,当涉及到非作物植被的识别时,植被的现场考察往往落在研究人员训练有素的眼睛和经验上。可以部署深度卷积神经网络(CNN)来降低人工分类的成本。虽然CNN优于其他传统分类器,如支持向量机,但CNN是否可以在工业环境中部署仍然是一个问题。在本文中,我们研究了CNN用于植被测绘在草坪杂草检测中的可行性。我们希望通过评估产生的结果,研究将这一概念扩展到现场、接近实时的作物现场检查的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信