Maxwell’s Equations and Potentials in Dirac form using Geometric Algebra

M. Mongiardo, F. Mastri, G. Monti, T. Rozzi
{"title":"Maxwell’s Equations and Potentials in Dirac form using Geometric Algebra","authors":"M. Mongiardo, F. Mastri, G. Monti, T. Rozzi","doi":"10.1109/IEEE-IWS.2019.8804005","DOIUrl":null,"url":null,"abstract":"The basis for engineering electromagnetic computations still relies on Gibbs’ vector algebra. It is well known that Clifford algebra (geometric algebra) presents several enhancement on the latter. In this paper it is shown that Maxwell’s equations can be cast in a form similar to Dirac equation by using spinors. Additionally, a similar relation is derived for the fields and the potentials. It is also shown that, as a consequence of using the geometric algebra approach, the Lorenz gauge comes naturally from the grade structure.","PeriodicalId":306297,"journal":{"name":"2019 IEEE MTT-S International Wireless Symposium (IWS)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2019.8804005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The basis for engineering electromagnetic computations still relies on Gibbs’ vector algebra. It is well known that Clifford algebra (geometric algebra) presents several enhancement on the latter. In this paper it is shown that Maxwell’s equations can be cast in a form similar to Dirac equation by using spinors. Additionally, a similar relation is derived for the fields and the potentials. It is also shown that, as a consequence of using the geometric algebra approach, the Lorenz gauge comes naturally from the grade structure.
用几何代数表示狄拉克形式的麦克斯韦方程和势
工程电磁计算的基础仍然依赖于吉布斯向量代数。众所周知,克利福德代数(几何代数)在后者的基础上有若干改进。本文证明了利用旋量可以将麦克斯韦方程转化为类似于狄拉克方程的形式。此外,对场和势也导出了类似的关系。还表明,作为使用几何代数方法的结果,洛伦兹规范自然地来自等级结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信