An information theoretic approach to neural network based system identification

K. Chernyshov
{"title":"An information theoretic approach to neural network based system identification","authors":"K. Chernyshov","doi":"10.1109/SIBCON.2009.5044836","DOIUrl":null,"url":null,"abstract":"The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.","PeriodicalId":164545,"journal":{"name":"2009 International Siberian Conference on Control and Communications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Siberian Conference on Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2009.5044836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.
基于神经网络的系统辨识的信息理论方法
本文提出了一种基于信息论准则的非线性随机系统输入/输出映射的系统辨识方法。在此基础上,将所研究系统的参数化描述与相应的互信息估计技术(香农意义上的互信息估计技术)相结合,最终导致有限维优化问题。后者的解决是基于将神经网络应用于连续函数优化问题的论文思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信