{"title":"Micromechanical model of high-energy materials to the curing","authors":"K. A. Chekhonin","doi":"10.47910/femj202212","DOIUrl":null,"url":null,"abstract":"During curing process of elastomeric composites residual stresses inevitably develop and play an important role in the final mechanical properties of composites. This work at a better understanding the effects of macro-level factors, including temperature, degree of cure variation and mechanical stains on micro-scale stresses with modification the Model Arruda-Boyce, and a Representative Volume Element to predict technology stresses in matrix.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
During curing process of elastomeric composites residual stresses inevitably develop and play an important role in the final mechanical properties of composites. This work at a better understanding the effects of macro-level factors, including temperature, degree of cure variation and mechanical stains on micro-scale stresses with modification the Model Arruda-Boyce, and a Representative Volume Element to predict technology stresses in matrix.