D-Mash: A Framework for Privacy-Preserving Data-as-a-Service Mashups

M. Arafati, Gaby G. Dagher, B. Fung, P. Hung
{"title":"D-Mash: A Framework for Privacy-Preserving Data-as-a-Service Mashups","authors":"M. Arafati, Gaby G. Dagher, B. Fung, P. Hung","doi":"10.1109/CLOUD.2014.73","DOIUrl":null,"url":null,"abstract":"Data-as-a-Service (DaaS) mashup enables data providers to dynamically integrate their data on demand depending on consumers' requests. Utilizing DaaS mashup, however, involves some challenges. Mashing up data from multiple sources to answer a consumer's request might reveal sensitive information and thereby compromise the privacy of individuals. Moreover, data integration of arbitrary DaaS providers might not always be sufficient to answer incoming requests. In this paper, we provide a cloud-based framework for privacy-preserving DaaS mashup that enables secure collaboration between DaaS providers for the purpose of generating an anonymous dataset to support data mining. Experiments on real-life data demonstrate that our DaaS mashup framework is scalable and can efficiently and effectively satisfy the data privacy and data mining requirements specified by the DaaS providers and the data consumers.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Data-as-a-Service (DaaS) mashup enables data providers to dynamically integrate their data on demand depending on consumers' requests. Utilizing DaaS mashup, however, involves some challenges. Mashing up data from multiple sources to answer a consumer's request might reveal sensitive information and thereby compromise the privacy of individuals. Moreover, data integration of arbitrary DaaS providers might not always be sufficient to answer incoming requests. In this paper, we provide a cloud-based framework for privacy-preserving DaaS mashup that enables secure collaboration between DaaS providers for the purpose of generating an anonymous dataset to support data mining. Experiments on real-life data demonstrate that our DaaS mashup framework is scalable and can efficiently and effectively satisfy the data privacy and data mining requirements specified by the DaaS providers and the data consumers.
D-Mash:一个保护隐私的数据即服务mashup框架
数据即服务(DaaS) mashup使数据提供者能够根据消费者的请求动态集成其数据。然而,利用DaaS mashup涉及到一些挑战。将来自多个来源的数据混在一起以响应消费者的请求可能会泄露敏感信息,从而损害个人隐私。此外,任意DaaS提供商的数据集成可能并不总是足以响应传入的请求。在本文中,我们为保护隐私的DaaS mashup提供了一个基于云的框架,该框架支持DaaS提供商之间的安全协作,以生成匿名数据集来支持数据挖掘。在实际数据上的实验表明,我们的DaaS mashup框架具有可扩展性,能够高效、有效地满足DaaS提供者和数据消费者指定的数据隐私和数据挖掘需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信