Transliteration by Bidirectional Statistical Machine Translation

A. Finch, E. Sumita
{"title":"Transliteration by Bidirectional Statistical Machine Translation","authors":"A. Finch, E. Sumita","doi":"10.3115/1699705.1699719","DOIUrl":null,"url":null,"abstract":"The system presented in this paper uses phrase-based statistical machine translation (SMT) techniques to directly transliterate between all language pairs in this shared task. The technique makes no language specific assumptions, uses no dictionaries or explicit phonetic information. The translation process transforms sequences of tokens in the source language directly into to sequences of tokens in the target. All language pairs were transliterated by applying this technique in a single unified manner. The machine translation system used was a system comprised of two phrase-based SMT decoders. The first generated from the first token of the target to the last. The second system generated the target from last to first. Our results show that if only one of these decoding strategies is to be chosen, the optimal choice depends on the languages involved, and that in general a combination of the two approaches is able to outperform either approach.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The system presented in this paper uses phrase-based statistical machine translation (SMT) techniques to directly transliterate between all language pairs in this shared task. The technique makes no language specific assumptions, uses no dictionaries or explicit phonetic information. The translation process transforms sequences of tokens in the source language directly into to sequences of tokens in the target. All language pairs were transliterated by applying this technique in a single unified manner. The machine translation system used was a system comprised of two phrase-based SMT decoders. The first generated from the first token of the target to the last. The second system generated the target from last to first. Our results show that if only one of these decoding strategies is to be chosen, the optimal choice depends on the languages involved, and that in general a combination of the two approaches is able to outperform either approach.
双向统计机器翻译的音译
本文提出的系统采用基于短语的统计机器翻译(SMT)技术,在该共享任务中直接在所有语言对之间进行音译。该技术没有对语言进行特定的假设,不使用字典或明确的语音信息。翻译过程将源语言中的符号序列直接转换为目标语言中的符号序列。所有的语言对都以统一的方式采用这种技术进行音译。使用的机器翻译系统是由两个基于短语的SMT解码器组成的系统。第一个从目标的第一个令牌到最后一个令牌生成。第二个系统从最后一个到第一个生成目标。我们的研究结果表明,如果只选择其中一种解码策略,则最佳选择取决于所涉及的语言,并且通常两种方法的组合能够优于任何一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信