Scalable top-k spatio-temporal term querying

Anders Skovsgaard, Darius Sidlauskas, Christian S. Jensen
{"title":"Scalable top-k spatio-temporal term querying","authors":"Anders Skovsgaard, Darius Sidlauskas, Christian S. Jensen","doi":"10.1109/ICDE.2014.6816647","DOIUrl":null,"url":null,"abstract":"With the rapidly increasing deployment of Internet-connected, location-aware mobile devices, very large and increasing amounts of geo-tagged and timestamped user-generated content, such as microblog posts, are being generated. We present indexing, update, and query processing techniques that are capable of providing the top-k terms seen in posts in a user-specified spatio-temporal range. The techniques enable interactive response times in the millisecond range in a realistic setting where the arrival rate of posts exceeds today's average tweet arrival rate by a factor of 4-10. The techniques adaptively maintain the most frequent items at various spatial and temporal granularities. They extend existing frequent item counting techniques to maintain exact counts rather than approximations. An extensive empirical study with a large collection of geo-tagged tweets shows that the proposed techniques enable online aggregation and query processing at scale in realistic settings.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

With the rapidly increasing deployment of Internet-connected, location-aware mobile devices, very large and increasing amounts of geo-tagged and timestamped user-generated content, such as microblog posts, are being generated. We present indexing, update, and query processing techniques that are capable of providing the top-k terms seen in posts in a user-specified spatio-temporal range. The techniques enable interactive response times in the millisecond range in a realistic setting where the arrival rate of posts exceeds today's average tweet arrival rate by a factor of 4-10. The techniques adaptively maintain the most frequent items at various spatial and temporal granularities. They extend existing frequent item counting techniques to maintain exact counts rather than approximations. An extensive empirical study with a large collection of geo-tagged tweets shows that the proposed techniques enable online aggregation and query processing at scale in realistic settings.
可伸缩的top-k时空项查询
随着互联网连接、位置感知移动设备部署的迅速增加,越来越多的带有地理标记和时间戳的用户生成内容(如微博帖子)正在生成。我们介绍了索引、更新和查询处理技术,这些技术能够在用户指定的时空范围内提供帖子中出现的前k个术语。这些技术使交互式响应时间在毫秒范围内,在现实设置中,帖子的到达率超过今天的平均tweet到达率4-10倍。该技术自适应地在不同的空间和时间粒度上保持最频繁的项目。它们扩展了现有的频繁项目计数技术,以保持精确的计数,而不是近似值。一项针对大量地理标记tweet的广泛实证研究表明,所提出的技术能够在现实环境中大规模地实现在线聚合和查询处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信