Quarter Turn Compositions and PETs

R. Schwartz
{"title":"Quarter Turn Compositions and PETs","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.19","DOIUrl":null,"url":null,"abstract":"This chapter proves a general compactification theorem for quarter turn compositions. It is organized as follows. Section 15.2 proves a well-known result from linear algebra which will help with the material in the following section. Section 15.3 defines the map Ψ‎: S → Ŝ and study the dimension of its image as a function of the parameters of Τ‎. Recall that Τ‎ is a composition of shears and quarter turn maps. Section 15.4 establishes Lemma 15.6, which shows that Ψ‎ interacts in the desired way with shears. Ψ‎15.5 establishes Lemma 15.7, which does the same thing for quarter turn maps. Ψ‎15.6 combines Lemmas 15.6 and 15.7 to prove Theorem 15.1.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter proves a general compactification theorem for quarter turn compositions. It is organized as follows. Section 15.2 proves a well-known result from linear algebra which will help with the material in the following section. Section 15.3 defines the map Ψ‎: S → Ŝ and study the dimension of its image as a function of the parameters of Τ‎. Recall that Τ‎ is a composition of shears and quarter turn maps. Section 15.4 establishes Lemma 15.6, which shows that Ψ‎ interacts in the desired way with shears. Ψ‎15.5 establishes Lemma 15.7, which does the same thing for quarter turn maps. Ψ‎15.6 combines Lemmas 15.6 and 15.7 to prove Theorem 15.1.
四分之一回合组合和宠物
本章证明了四分之一转组合的一个一般紧化定理。它的组织如下。第15.2节证明了线性代数中一个众所周知的结果,这将有助于下一节的内容。第15.3节定义了地图Ψ: S→Ŝ,并研究了其图像的维度作为Τ的参数的函数。回想一下,Τ是剪切和四分之一回合映射的组合。第15.4节建立了引理15.6,它表明Ψ与剪切器以期望的方式相互作用。Ψ 15.5建立引理15.7,它对四分之一回合地图做同样的事情。Ψ(15.6)结合引理15.6和15.7来证明定理15.1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信