Identification of DMSP-5 Fluidic Muscle Dynamics Using Hammerstein Model

A. Hošovský, Monika Trojanová, J. Pitel’, J. Svetlík
{"title":"Identification of DMSP-5 Fluidic Muscle Dynamics Using Hammerstein Model","authors":"A. Hošovský, Monika Trojanová, J. Pitel’, J. Svetlík","doi":"10.1109/SACI.2018.8440976","DOIUrl":null,"url":null,"abstract":"Fluidic muscles are pneumatic artificial muscles with specific construction and improved characteristics over the muscles with separate tube and outer fibre shell (McKibben type). In the paper we investigate the dynamics of DMSP-5 fluidic muscle, which is treated as a SISO system with voltage as an input variable and its displacement as an output variable. Based on the random step excitation, it is shown here that Hammerstein model, which is an attractive model from control viewpoint, can be a suitable model architecture for modeling its dynamics. Possible structure of this model with 2-zeros, 3-poles linear transfer function and sigmoid neural network approximation of static nonlinearity is identified and used for initialization of the estimation algorithm. The resulting model is based on triangular excitation signal using Levenberg-Marquardt optimization algorithm and achieves 93% fit on test data with total of 12 parameters.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"461 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fluidic muscles are pneumatic artificial muscles with specific construction and improved characteristics over the muscles with separate tube and outer fibre shell (McKibben type). In the paper we investigate the dynamics of DMSP-5 fluidic muscle, which is treated as a SISO system with voltage as an input variable and its displacement as an output variable. Based on the random step excitation, it is shown here that Hammerstein model, which is an attractive model from control viewpoint, can be a suitable model architecture for modeling its dynamics. Possible structure of this model with 2-zeros, 3-poles linear transfer function and sigmoid neural network approximation of static nonlinearity is identified and used for initialization of the estimation algorithm. The resulting model is based on triangular excitation signal using Levenberg-Marquardt optimization algorithm and achieves 93% fit on test data with total of 12 parameters.
基于Hammerstein模型的DMSP-5流体肌肉动力学研究
流体肌肉是一种具有特殊结构的气动人造肌肉,其性能优于具有分离管和外纤维壳的肌肉(McKibben型)。本文研究了DMSP-5流体肌肉的动力学特性,并将其视为电压为输入变量,位移为输出变量的SISO系统。基于随机阶跃激励,Hammerstein模型从控制的角度来看是一个有吸引力的模型,可以作为一种合适的模型体系来建模其动力学。该模型具有2- 0、3极线性传递函数和静态非线性的s型神经网络逼近,识别了该模型的可能结构,并将其用于估计算法的初始化。该模型采用Levenberg-Marquardt优化算法,基于三角形激励信号,对共12个参数的测试数据拟合达到93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信