r3d3: Optimized Query Compilation on GPUs

Alexander Krolik, Clark Verbrugge, L. Hendren
{"title":"r3d3: Optimized Query Compilation on GPUs","authors":"Alexander Krolik, Clark Verbrugge, L. Hendren","doi":"10.1109/CGO51591.2021.9370323","DOIUrl":null,"url":null,"abstract":"Query compilation is an effective approach to improve the performance of repeated database queries. GPU-based approaches have significant promise, but face difficulties in managing compilation time, data transfer costs, and in addressing a reasonably comprehensive range of SQL operations. In this work we describe a hybrid AoT/JIT approach to GPU-based query compilation. We use multiple optimizations to reduce execution, compile, and data transfer times, improving performance over both other GPU-based approaches and CPU-based query compilers as well. Our design addresses a wide range of SQL queries, sufficient to demonstrate the practicality of using GPUs for query optimization.","PeriodicalId":275062,"journal":{"name":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO51591.2021.9370323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Query compilation is an effective approach to improve the performance of repeated database queries. GPU-based approaches have significant promise, but face difficulties in managing compilation time, data transfer costs, and in addressing a reasonably comprehensive range of SQL operations. In this work we describe a hybrid AoT/JIT approach to GPU-based query compilation. We use multiple optimizations to reduce execution, compile, and data transfer times, improving performance over both other GPU-based approaches and CPU-based query compilers as well. Our design addresses a wide range of SQL queries, sufficient to demonstrate the practicality of using GPUs for query optimization.
r3d3: gpu上的优化查询编译
查询编译是提高重复数据库查询性能的有效方法。基于gpu的方法具有重要的前景,但在管理编译时间、数据传输成本和处理相当广泛的SQL操作方面面临困难。在本文中,我们描述了一种基于gpu的查询编译的AoT/JIT混合方法。我们使用多种优化来减少执行、编译和数据传输时间,从而提高了其他基于gpu的方法和基于cpu的查询编译器的性能。我们的设计处理了广泛的SQL查询,足以证明使用gpu进行查询优化的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信