J. Mendenhall, D. Hearn, J. Evans, D.E. Lencioni, C.J. Digenis, R.D. Welsh
{"title":"Initial flight test results from the EO-1 Advanced Land Imager: radiometric performance","authors":"J. Mendenhall, D. Hearn, J. Evans, D.E. Lencioni, C.J. Digenis, R.D. Welsh","doi":"10.1109/IGARSS.2001.976207","DOIUrl":null,"url":null,"abstract":"The Advanced Land Imager (ALI) is one of three instruments flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The primary NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass and schedule for future, Landsat-like, Earth remote sensing instruments. ALI contains a number of innovative features, including all the Category 1 technology demonstrations of the EO-1 mission. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multispectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics and a multi-level solar calibration technique. The Earth Observing-1 spacecraft was successfully launched on November 21, 2000. During the first sixty days on orbit, several Earth scenes were collected and on-orbit calibration techniques were exercised by the Advanced Land Imager. This paper presents the status of ALI radiometric performance characterization obtained from the data collected during that period.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.976207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The Advanced Land Imager (ALI) is one of three instruments flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The primary NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass and schedule for future, Landsat-like, Earth remote sensing instruments. ALI contains a number of innovative features, including all the Category 1 technology demonstrations of the EO-1 mission. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multispectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics and a multi-level solar calibration technique. The Earth Observing-1 spacecraft was successfully launched on November 21, 2000. During the first sixty days on orbit, several Earth scenes were collected and on-orbit calibration techniques were exercised by the Advanced Land Imager. This paper presents the status of ALI radiometric performance characterization obtained from the data collected during that period.