Amin Majd, M. Daneshtalab, E. Troubitsyna, Golnaz Sahebi
{"title":"Optimal smart mobile access point placement for maximal coverage and minimal communication","authors":"Amin Majd, M. Daneshtalab, E. Troubitsyna, Golnaz Sahebi","doi":"10.1145/3123779.3123799","DOIUrl":null,"url":null,"abstract":"A selection of the optimal placements of the access points and sensors constitutes one of the fundamental challenges in the monitoring of spatial phenomena in wireless sensor networks (WSNs). Access points should occupy the best locations in order to obtain a sufficient degree of coverage with a low communication cost. Finding an optimal placement is an NP-hard problem that is further complicated by the real-world conditions such as obstacles, radiation interference etc. In this paper, we propose a compound method to select the best near-optimal placement of SMAPs with the goal to maximize the monitoring coverage and to minimize the communication cost. Our approach combines a parallel implementation of the Imperialist Competitive Algorithm (ICA) with a greedy method. The benchmarking of the proposed approach demonstrates its clear advantages in solving and optimizing the placement problem.","PeriodicalId":405980,"journal":{"name":"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3123779.3123799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A selection of the optimal placements of the access points and sensors constitutes one of the fundamental challenges in the monitoring of spatial phenomena in wireless sensor networks (WSNs). Access points should occupy the best locations in order to obtain a sufficient degree of coverage with a low communication cost. Finding an optimal placement is an NP-hard problem that is further complicated by the real-world conditions such as obstacles, radiation interference etc. In this paper, we propose a compound method to select the best near-optimal placement of SMAPs with the goal to maximize the monitoring coverage and to minimize the communication cost. Our approach combines a parallel implementation of the Imperialist Competitive Algorithm (ICA) with a greedy method. The benchmarking of the proposed approach demonstrates its clear advantages in solving and optimizing the placement problem.