Ashwin Kallingal Joshy, Xueyuan Chen, Benjamin Steenhoek, Wei Le
{"title":"Validating static warnings via testing code fragments","authors":"Ashwin Kallingal Joshy, Xueyuan Chen, Benjamin Steenhoek, Wei Le","doi":"10.1145/3460319.3464832","DOIUrl":null,"url":null,"abstract":"Static analysis is an important approach for finding bugs and vulnerabilities in software. However, inspecting and confirming static warnings are challenging and time-consuming. In this paper, we present a novel solution that automatically generates test cases based on static warnings to validate true and false positives. We designed a syntactic patching algorithm that can generate syntactically valid, semantic preserving executable code fragments from static warnings. We developed a build and testing system to automatically test code fragments using fuzzers, KLEE and Valgrind. We evaluated our techniques using 12 real-world C projects and 1955 warnings from two commercial static analysis tools. We successfully built 68.5% code fragments and generated 1003 test cases. Through automatic testing, we identified 48 true positives and 27 false positives, and 205 likely false positives. We matched 4 CVE and real-world bugs using Helium, and they are only triggered by our tool but not other baseline tools. We found that testing code fragments is scalable and useful; it can trigger bugs that testing entire programs or testing procedures failed to trigger.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Static analysis is an important approach for finding bugs and vulnerabilities in software. However, inspecting and confirming static warnings are challenging and time-consuming. In this paper, we present a novel solution that automatically generates test cases based on static warnings to validate true and false positives. We designed a syntactic patching algorithm that can generate syntactically valid, semantic preserving executable code fragments from static warnings. We developed a build and testing system to automatically test code fragments using fuzzers, KLEE and Valgrind. We evaluated our techniques using 12 real-world C projects and 1955 warnings from two commercial static analysis tools. We successfully built 68.5% code fragments and generated 1003 test cases. Through automatic testing, we identified 48 true positives and 27 false positives, and 205 likely false positives. We matched 4 CVE and real-world bugs using Helium, and they are only triggered by our tool but not other baseline tools. We found that testing code fragments is scalable and useful; it can trigger bugs that testing entire programs or testing procedures failed to trigger.