Multiple linear regression for universal steganalysis of images

François Kasséné Gomis, M. Camara, I. Diop, S. M. Farssi, K. Tall, Birahime Diouf
{"title":"Multiple linear regression for universal steganalysis of images","authors":"François Kasséné Gomis, M. Camara, I. Diop, S. M. Farssi, K. Tall, Birahime Diouf","doi":"10.1109/ISACV.2018.8354060","DOIUrl":null,"url":null,"abstract":"Steganography is the art of hiding information in a cover (carrier) medium to obtain a stego-medium without any suspicion from a viewer who see that last one. Steganalysis is the opposite discipline. Its goal is to detect the presence of hidden information from a stego-medium. The medium can be an audio, video or image file. In this work, we focus on image file medium. Universal steganalysis is the detection of hidden data without knowing the algorithm used to embed the message inside the carrier. There are some methods of classification between stego and cover medium proposed in literature. In this paper, we propose a new universal steganalysis method based on unsupervised and supervised machine learning algorithms. Our method reduces the cover-source mismatch problem in the first stage and uses multiple linear regression in the second stage to predict the relative payload (in terms of bits per non-zero AC DCT coefficient) of the embedded message. With this measure, we can easily calculate the length of the embedded message. In our experiments, we got reliable models in all the clusters to predict the relative payload for cover-images and stego-images.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Steganography is the art of hiding information in a cover (carrier) medium to obtain a stego-medium without any suspicion from a viewer who see that last one. Steganalysis is the opposite discipline. Its goal is to detect the presence of hidden information from a stego-medium. The medium can be an audio, video or image file. In this work, we focus on image file medium. Universal steganalysis is the detection of hidden data without knowing the algorithm used to embed the message inside the carrier. There are some methods of classification between stego and cover medium proposed in literature. In this paper, we propose a new universal steganalysis method based on unsupervised and supervised machine learning algorithms. Our method reduces the cover-source mismatch problem in the first stage and uses multiple linear regression in the second stage to predict the relative payload (in terms of bits per non-zero AC DCT coefficient) of the embedded message. With this measure, we can easily calculate the length of the embedded message. In our experiments, we got reliable models in all the clusters to predict the relative payload for cover-images and stego-images.
图像通用隐写分析的多元线性回归
隐写术是一种将信息隐藏在掩蔽(载体)介质中以获得隐写介质而不被看到最后一个的观看者怀疑的艺术。隐写分析是相反的学科。它的目标是检测隐藏信息的存在。媒体可以是音频、视频或图像文件。在本工作中,我们主要研究图像文件介质。通用隐写分析是在不知道将信息嵌入载体的算法的情况下检测隐藏数据。文献中提出了一些对隐媒体和覆盖媒体的分类方法。本文提出了一种基于无监督和有监督机器学习算法的通用隐写分析方法。我们的方法在第一阶段减少了覆盖-源不匹配问题,并在第二阶段使用多元线性回归来预测嵌入消息的相对有效载荷(根据每个非零AC DCT系数的比特数)。有了这个度量,我们可以很容易地计算出嵌入消息的长度。在我们的实验中,我们在所有的聚类中都得到了可靠的模型来预测覆盖图像和隐写图像的相对有效载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信