Comparison of Probabilistic Forecasts for Predictive Voltage Control

Hossein Panamtash, Shahrzad Mahdavi, A. Dimitrovski, Qun Zhou
{"title":"Comparison of Probabilistic Forecasts for Predictive Voltage Control","authors":"Hossein Panamtash, Shahrzad Mahdavi, A. Dimitrovski, Qun Zhou","doi":"10.1109/NAPS50074.2021.9449769","DOIUrl":null,"url":null,"abstract":"This paper explores predictive cooperative voltage control in distribution systems with highly variable sources such as photovoltaics (PV). The goal is to maintain the voltage profile within the limits despite the fluctuations due to sudden changes in solar power generation. The predictive voltage control method relies on probabilistic solar power and load forecasts to select the optimum Voltage Regulator (VR) taps appropriately. VR taps are selected to minimize the risk of voltage violation. A modified version of the IEEE 123 system is used as the case study. A 100% penetration of solar power is assumed for the distribution system with profiles for solar generation and loads added to the system. Three different probabilistic forecast models (Quantile Regression (QR), Gaussian distribution and volatility forecasting using Generalized Autoregressive Conditional Heteroskedasticity (GARCH)) are explored in this study. The results for the VR taps and Voltage Deviation Index (VDI) are compared to find the most effective forecast model.","PeriodicalId":170486,"journal":{"name":"2020 52nd North American Power Symposium (NAPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 52nd North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS50074.2021.9449769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper explores predictive cooperative voltage control in distribution systems with highly variable sources such as photovoltaics (PV). The goal is to maintain the voltage profile within the limits despite the fluctuations due to sudden changes in solar power generation. The predictive voltage control method relies on probabilistic solar power and load forecasts to select the optimum Voltage Regulator (VR) taps appropriately. VR taps are selected to minimize the risk of voltage violation. A modified version of the IEEE 123 system is used as the case study. A 100% penetration of solar power is assumed for the distribution system with profiles for solar generation and loads added to the system. Three different probabilistic forecast models (Quantile Regression (QR), Gaussian distribution and volatility forecasting using Generalized Autoregressive Conditional Heteroskedasticity (GARCH)) are explored in this study. The results for the VR taps and Voltage Deviation Index (VDI) are compared to find the most effective forecast model.
预测电压控制的概率预测比较
本文研究了具有高度可变电源(如光伏)的配电系统的预测协同电压控制。目标是保持电压分布在限制内,尽管波动由于太阳能发电的突然变化。预测电压控制方法依靠太阳能发电和负荷的概率预测来选择合适的电压调节器(VR)分接。选择VR抽头可以最大限度地降低电压违规的风险。一个修改版本的IEEE 123系统被用作案例研究。假设配电系统的太阳能渗透率为100%,并为太阳能发电和系统增加负荷。本文探讨了三种不同的概率预测模型(分位数回归、高斯分布和基于广义自回归条件异方差的波动率预测)。比较了虚拟现实抽头和电压偏差指数(VDI)的预测结果,找出了最有效的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信