Accelerated Processing of Secure Email by Exploiting Built-in Security Features on the Intel EP80579 Integrated Processor with Intel QuickAssist Technology
{"title":"Accelerated Processing of Secure Email by Exploiting Built-in Security Features on the Intel EP80579 Integrated Processor with Intel QuickAssist Technology","authors":"V. Keshavamurthy, S. Upadhyaya, V. Gopal","doi":"10.1109/SRDSW.2011.10","DOIUrl":null,"url":null,"abstract":"Domain Keys Identified Mail (DKIM) is one of the widely used mechanisms by which email messages can be cryptographically signed, permitting a signing domain to claim responsibility for the release of an email into the mail stream. As the volume of emails exchanged becomes large, the software implementations of DKIM using OpenSSL library will become a limiting factor of performance due to the heavy computations involved. In this largely empirical work, we identify the computation intensive modules of DKIM and solve the performance issues by implementing their functions on COTS hardware. Our approach makes use of the Intel Embedded processor Tolapai (Intel EP80579) that has several built-in cryptographic functionalities, viz. security accelerators for bulk encryption, authentication, hashing and public/private key generation and digital signing. Experimental results show that an overall 50% acceleration can be achieved by transparently migrating the DKIM functionalities to hardware.","PeriodicalId":109745,"journal":{"name":"2011 IEEE 30th Symposium on Reliable Distributed Systems Workshops","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 30th Symposium on Reliable Distributed Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDSW.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Domain Keys Identified Mail (DKIM) is one of the widely used mechanisms by which email messages can be cryptographically signed, permitting a signing domain to claim responsibility for the release of an email into the mail stream. As the volume of emails exchanged becomes large, the software implementations of DKIM using OpenSSL library will become a limiting factor of performance due to the heavy computations involved. In this largely empirical work, we identify the computation intensive modules of DKIM and solve the performance issues by implementing their functions on COTS hardware. Our approach makes use of the Intel Embedded processor Tolapai (Intel EP80579) that has several built-in cryptographic functionalities, viz. security accelerators for bulk encryption, authentication, hashing and public/private key generation and digital signing. Experimental results show that an overall 50% acceleration can be achieved by transparently migrating the DKIM functionalities to hardware.