Characterization of a pseudo-DRAM Crossbar Computational Memory Array in 55nm CMOS : (Invited Paper)

Gaspar Tognetti, Jonah P. Sengupta, P. Pouliquen, A. Andreou
{"title":"Characterization of a pseudo-DRAM Crossbar Computational Memory Array in 55nm CMOS : (Invited Paper)","authors":"Gaspar Tognetti, Jonah P. Sengupta, P. Pouliquen, A. Andreou","doi":"10.1109/CISS.2019.8692863","DOIUrl":null,"url":null,"abstract":"As computational needs increase in relation to the growing fields of Internet of Things and Deep Learning, energy-efficient, computational units are needed to bypass DSP units within Von Neumann architectures. A charge-mode vector matrix multiplier (VMM) with compute-in memory capabilities was fabricated in the Global Foundries 55nm LP process. The array is comprised of a 156 row by 512 column crossbar where each row computes a 512 element binary dot product in the charge domain. This normalized analog multiply and accumulate (MAC) is carried out by charge-injection devices who compute a 1-bit multiplication in the charge domain. Preliminary test results show successful, linear output computation in the analog domain to various input vectors that are both digital and multi-level analog. The 156 × 512 compute-in memory, CID array has been simulated to achieve an efficiency of 1.8 TOPs per mW.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As computational needs increase in relation to the growing fields of Internet of Things and Deep Learning, energy-efficient, computational units are needed to bypass DSP units within Von Neumann architectures. A charge-mode vector matrix multiplier (VMM) with compute-in memory capabilities was fabricated in the Global Foundries 55nm LP process. The array is comprised of a 156 row by 512 column crossbar where each row computes a 512 element binary dot product in the charge domain. This normalized analog multiply and accumulate (MAC) is carried out by charge-injection devices who compute a 1-bit multiplication in the charge domain. Preliminary test results show successful, linear output computation in the analog domain to various input vectors that are both digital and multi-level analog. The 156 × 512 compute-in memory, CID array has been simulated to achieve an efficiency of 1.8 TOPs per mW.
基于55nm CMOS的伪dram交叉条计算存储器阵列的表征(特邀论文)
随着物联网和深度学习领域的不断发展,计算需求不断增加,需要节能的计算单元来绕过冯·诺伊曼架构中的DSP单元。采用globalfoundries 55nm LP工艺制备了具有计算机存储能力的电荷模式矢量矩阵乘法器(VMM)。该数组由156行乘512列的交叉条组成,其中每行计算电荷域中512个元素的二进制点积。这种归一化模拟乘法和累积(MAC)是由电荷注入器件在电荷域中计算1位乘法来实现的。初步的测试结果表明,在模拟域对各种数字和多级模拟输入向量的线性输出计算是成功的。对156 × 512计算机存储器CID阵列进行了仿真,达到了1.8 TOPs / mW的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信