{"title":"Gaussian Circular 2D FIR Filters Designed Using Analytical Approach","authors":"R. Matei","doi":"10.37394/232014.2020.16.14","DOIUrl":null,"url":null,"abstract":"This paper proposes an analytical design procedure for a particular class of 2D filters, namelyGaussian-shaped, circularly-symmetric FIR filters. We approach both low-pass and band-pass circular filters,which are adjustable in selectivity and peak frequency. The design starts from a given 1D Gaussian prototypefilter, approximated using the Chebyshev series. A frequency transformation is applied to derive the circularfilter. Several design examples are provided for both types of filters. The filters designed through this methodare efficient, their frequency response results in a factored or nested form, convenient for implementation.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2020.16.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes an analytical design procedure for a particular class of 2D filters, namelyGaussian-shaped, circularly-symmetric FIR filters. We approach both low-pass and band-pass circular filters,which are adjustable in selectivity and peak frequency. The design starts from a given 1D Gaussian prototypefilter, approximated using the Chebyshev series. A frequency transformation is applied to derive the circularfilter. Several design examples are provided for both types of filters. The filters designed through this methodare efficient, their frequency response results in a factored or nested form, convenient for implementation.