Skeleton-based human motion prediction via spatio and position encoding transformer network

Lingchao Mi, Rui Ding, Xiaodong Zhang
{"title":"Skeleton-based human motion prediction via spatio and position encoding transformer network","authors":"Lingchao Mi, Rui Ding, Xiaodong Zhang","doi":"10.1117/12.2667366","DOIUrl":null,"url":null,"abstract":"Many transformer modules, have been applied to computer vision. However, the transformer can extract the distal connections of human skeleton points and apply the attention mechanism to the problem of predicting human motion pose. We introduce a transformer module in the joint dimension. In addition, the Encoder module of the transformer is improved. Finally, our method achieves impressive results on benchmark datasets, including short- and long-term predictions of FNTU, confirming its effectiveness and efficiency.","PeriodicalId":137914,"journal":{"name":"International Conference on Artificial Intelligence, Virtual Reality, and Visualization","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence, Virtual Reality, and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many transformer modules, have been applied to computer vision. However, the transformer can extract the distal connections of human skeleton points and apply the attention mechanism to the problem of predicting human motion pose. We introduce a transformer module in the joint dimension. In addition, the Encoder module of the transformer is improved. Finally, our method achieves impressive results on benchmark datasets, including short- and long-term predictions of FNTU, confirming its effectiveness and efficiency.
基于空间和位置编码变压器网络的骨骼运动预测
许多变压器模块,已经应用到计算机视觉中。然而,变压器可以提取人体骨骼点的远端连接,并将注意机制应用于人体运动姿态的预测问题。我们在接头尺寸中引入了一个变压器模块。此外,对变压器的编码器模块进行了改进。最后,我们的方法在基准数据集上取得了令人印象深刻的结果,包括FNTU的短期和长期预测,证实了它的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信