3D automated colon segmentation for efficient polyp detection

M. Ismail, S. Elhabian, A. Farag, G. Dryden, A. Seow
{"title":"3D automated colon segmentation for efficient polyp detection","authors":"M. Ismail, S. Elhabian, A. Farag, G. Dryden, A. Seow","doi":"10.1109/CIBEC.2012.6473334","DOIUrl":null,"url":null,"abstract":"With polyps being the main cause of colorectal cancer, accurate colon segmentation is a crucial step for polyp detection in a virtual colonoscopy system. This paper presents a fully automated segmentation framework for the colon which is based on convex formulation of the active contour model. Our approach is tested on 7 sets where the results are further validated for polyp detection. Results show the efficiency of the framework with an overall accuracy of 99%, and high sensitivity of polyp detection.","PeriodicalId":416740,"journal":{"name":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2012.6473334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With polyps being the main cause of colorectal cancer, accurate colon segmentation is a crucial step for polyp detection in a virtual colonoscopy system. This paper presents a fully automated segmentation framework for the colon which is based on convex formulation of the active contour model. Our approach is tested on 7 sets where the results are further validated for polyp detection. Results show the efficiency of the framework with an overall accuracy of 99%, and high sensitivity of polyp detection.
3D自动结肠分割有效的息肉检测
由于息肉是结直肠癌的主要病因,在虚拟结肠镜系统中,准确的结肠分割是息肉检测的关键步骤。本文提出了一种基于活动轮廓模型的凸公式的冒号全自动分割框架。我们的方法在7组上进行了测试,结果进一步验证了息肉检测的有效性。结果表明,该框架的总体准确率为99%,对息肉的检测具有较高的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信