Caio B. G. Carvalho, V. C. Ferreira, F. França, C. Bentes, G. Mencagli, Tiago A. O. Alves, A. Sena, L. A. J. Marzulo
{"title":"A dataflow runtime environment and static scheduler for edge, fog and in-situ computing","authors":"Caio B. G. Carvalho, V. C. Ferreira, F. França, C. Bentes, G. Mencagli, Tiago A. O. Alves, A. Sena, L. A. J. Marzulo","doi":"10.1504/IJGUC.2019.099685","DOIUrl":null,"url":null,"abstract":"In the dataflow computation model, tasks are executed according to data dependencies, instead of following program order, enabling natural parallelism exploitation. Sucuri is a dataflow library for Python that allows transparent execution of applications on clusters of multicores, while taking care of scheduling issues. Recent trends in edge/fog/In-situ computing assume that storage and network devices will have processing elements with lower power consumption and performance, which would make a good case for runtime environments that deal with the data versus computation movements trade-off in a more transparent and automated way. This work presents a study on different factors that should be considered when running dataflow applications in in-situ environments, using Sucuri to conduct experiments in a small system emulating a smart storage (in-situ device) utilisation. A static scheduling solution is also presented, allowing Sucuri to choose the most suited approach regarding this in-situ trade-off.","PeriodicalId":375871,"journal":{"name":"Int. J. Grid Util. Comput.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Grid Util. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJGUC.2019.099685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the dataflow computation model, tasks are executed according to data dependencies, instead of following program order, enabling natural parallelism exploitation. Sucuri is a dataflow library for Python that allows transparent execution of applications on clusters of multicores, while taking care of scheduling issues. Recent trends in edge/fog/In-situ computing assume that storage and network devices will have processing elements with lower power consumption and performance, which would make a good case for runtime environments that deal with the data versus computation movements trade-off in a more transparent and automated way. This work presents a study on different factors that should be considered when running dataflow applications in in-situ environments, using Sucuri to conduct experiments in a small system emulating a smart storage (in-situ device) utilisation. A static scheduling solution is also presented, allowing Sucuri to choose the most suited approach regarding this in-situ trade-off.