Adaptive Weighting with SMOTE for Learning from Imbalanced Datasets: A Case Study for Traffic Offence Prediction

Naga Prasanthi Bobbili, A. Crétu
{"title":"Adaptive Weighting with SMOTE for Learning from Imbalanced Datasets: A Case Study for Traffic Offence Prediction","authors":"Naga Prasanthi Bobbili, A. Crétu","doi":"10.1109/CIVEMSA.2018.8439957","DOIUrl":null,"url":null,"abstract":"This paper proposes to augment the prediction capability of a classifier or of an ensemble of classifiers for an imbalanced set using a combination of informed sampling based on SMOTE (Synthetic Minority Oversampling Technique) and a post-classification adaptive weighting that takes into account a priori knowledge about a dataset. As a case study, the paper analyzes the relationship between traffic tickets (provincial offence notices), their types and the trends in attributes such as vehicle type, offence type, location, ticket status for the city of Ottawa, Canada with the purpose of enabling a proactive traffic enforcement.","PeriodicalId":305399,"journal":{"name":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2018.8439957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes to augment the prediction capability of a classifier or of an ensemble of classifiers for an imbalanced set using a combination of informed sampling based on SMOTE (Synthetic Minority Oversampling Technique) and a post-classification adaptive weighting that takes into account a priori knowledge about a dataset. As a case study, the paper analyzes the relationship between traffic tickets (provincial offence notices), their types and the trends in attributes such as vehicle type, offence type, location, ticket status for the city of Ottawa, Canada with the purpose of enabling a proactive traffic enforcement.
基于SMOTE的不平衡数据学习自适应加权:交通违规预测案例研究
本文提出使用基于SMOTE(合成少数派过采样技术)的知情采样和考虑数据集先验知识的分类后自适应加权相结合的方法来增强分类器或分类器集成对不平衡集的预测能力。本文以加拿大渥太华市为例,分析了交通罚单(省级违规通知)及其类型与车辆类型、违规类型、地点、罚单状态等属性的趋势之间的关系,旨在实现主动交通执法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信