The weighted Support Vector Machines for the stock turning point prediction

P. Chang, Jheng-Long Wu
{"title":"The weighted Support Vector Machines for the stock turning point prediction","authors":"P. Chang, Jheng-Long Wu","doi":"10.1109/ISDA.2014.7066264","DOIUrl":null,"url":null,"abstract":"This research treats the stock turning point prediction as the imbalanced data classification problems and proposes the evolving weighted support vector machines (EW-SVM) system that leads to superior predictions upon the direction-of-change of the market. However, many parameters of the w-SVM model have to be decided by the user beforehand. Therefore, the EW-SVM system combining both w-SVM with GA is applied to forecast stock turning points. In the experimental results, the EW-SVM system is used to predict stock turning points and is compared to other prediction models including the SVM, DT, NB and k-NN models. These experimental results show that our EW-SVM system has the better performance among all the different approaches.","PeriodicalId":328479,"journal":{"name":"2014 14th International Conference on Intelligent Systems Design and Applications","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2014.7066264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research treats the stock turning point prediction as the imbalanced data classification problems and proposes the evolving weighted support vector machines (EW-SVM) system that leads to superior predictions upon the direction-of-change of the market. However, many parameters of the w-SVM model have to be decided by the user beforehand. Therefore, the EW-SVM system combining both w-SVM with GA is applied to forecast stock turning points. In the experimental results, the EW-SVM system is used to predict stock turning points and is compared to other prediction models including the SVM, DT, NB and k-NN models. These experimental results show that our EW-SVM system has the better performance among all the different approaches.
基于加权支持向量机的股票拐点预测
本研究将股票拐点预测视为不平衡数据分类问题,提出了基于进化加权支持向量机(EW-SVM)的系统,该系统对市场的变化方向进行了更优的预测。然而,w-SVM模型的许多参数必须由用户事先确定。因此,将w-SVM与遗传算法相结合的EW-SVM系统用于股票拐点预测。在实验结果中,将EW-SVM系统用于股票拐点预测,并与SVM、DT、NB和k-NN模型等预测模型进行了比较。这些实验结果表明,我们的EW-SVM系统在所有不同的方法中具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信