Blind least-squares approaches for joint data/channel estimation

D. Gesbert, P. Duhamel, S. Mayrargue
{"title":"Blind least-squares approaches for joint data/channel estimation","authors":"D. Gesbert, P. Duhamel, S. Mayrargue","doi":"10.1109/DSPWS.1996.555559","DOIUrl":null,"url":null,"abstract":"This article addresses the problem of recovering blindly a source which has been sent through a multipath environment in a wireless multichannel context. A possible approach, primarily based on a joint data/channel estimation strategy, is outlined. The single-input/multiple-output (SIMO) deconvolution problem is first considered in a purely deterministic context, based on the minimization of a bilinear least-squares cost function, where the parameters to be adjusted are the channel coefficients and the transmitted signal vector, regardless of the finite alphabet property. A similar-output matching philosophy is used to construct a blind adaptive multichannel equalization scheme, with decision-feedback. The simulations show the robustness of the algorithm with respect to problems like channel order estimation errors and lack of channel diversity.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This article addresses the problem of recovering blindly a source which has been sent through a multipath environment in a wireless multichannel context. A possible approach, primarily based on a joint data/channel estimation strategy, is outlined. The single-input/multiple-output (SIMO) deconvolution problem is first considered in a purely deterministic context, based on the minimization of a bilinear least-squares cost function, where the parameters to be adjusted are the channel coefficients and the transmitted signal vector, regardless of the finite alphabet property. A similar-output matching philosophy is used to construct a blind adaptive multichannel equalization scheme, with decision-feedback. The simulations show the robustness of the algorithm with respect to problems like channel order estimation errors and lack of channel diversity.
联合数据/信道估计的盲最小二乘方法
本文解决了在无线多通道上下文中通过多路径环境发送的信号源的盲目恢复问题。概述了一种主要基于联合数据/信道估计策略的可能方法。单输入/多输出(SIMO)反卷积问题首先在纯确定性的背景下考虑,基于双线性最小二乘代价函数的最小化,其中要调整的参数是信道系数和传输信号矢量,而不考虑有限字母的性质。采用相似输出匹配原理,构造了一种带决策反馈的盲自适应多通道均衡方案。仿真结果表明,该算法对信道序估计误差和信道分集不足等问题具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信