Data-Driven Model of Nonverbal Behavior for Socially Assistive Human-Robot Interactions

H. Admoni, B. Scassellati
{"title":"Data-Driven Model of Nonverbal Behavior for Socially Assistive Human-Robot Interactions","authors":"H. Admoni, B. Scassellati","doi":"10.1145/2663204.2663263","DOIUrl":null,"url":null,"abstract":"Socially assistive robotics (SAR) aims to develop robots that help people through interactions that are inherently social, such as tutoring and coaching. For these interactions to be effective, socially assistive robots must be able to recognize and use nonverbal social cues like eye gaze and gesture. In this paper, we present a preliminary model for nonverbal robot behavior in a tutoring application. Using empirical data from teachers and students in human-human tutoring interactions, the model can be both predictive (recognizing the context of new nonverbal behaviors) and generative (creating new robot nonverbal behaviors based on a desired context) using the same underlying data representation.","PeriodicalId":389037,"journal":{"name":"Proceedings of the 16th International Conference on Multimodal Interaction","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663204.2663263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Socially assistive robotics (SAR) aims to develop robots that help people through interactions that are inherently social, such as tutoring and coaching. For these interactions to be effective, socially assistive robots must be able to recognize and use nonverbal social cues like eye gaze and gesture. In this paper, we present a preliminary model for nonverbal robot behavior in a tutoring application. Using empirical data from teachers and students in human-human tutoring interactions, the model can be both predictive (recognizing the context of new nonverbal behaviors) and generative (creating new robot nonverbal behaviors based on a desired context) using the same underlying data representation.
社会辅助人机交互的非语言行为数据驱动模型
社交辅助机器人(SAR)旨在开发机器人,帮助人们通过内在的社交互动,如辅导和指导。为了使这些互动有效,社交辅助机器人必须能够识别和使用非语言的社交线索,如眼神和手势。在本文中,我们提出了一个非语言机器人在辅导应用中的初步模型。利用师生在人际辅导互动中的经验数据,该模型既可以预测(识别新的非语言行为的背景),也可以使用相同的底层数据表示生成(基于期望的背景创建新的机器人非语言行为)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信