Navid Rekabsaz, R. Bierig, B. Ionescu, A. Hanbury, M. Lupu
{"title":"On the use of statistical semantics for metadata-based social image retrieval","authors":"Navid Rekabsaz, R. Bierig, B. Ionescu, A. Hanbury, M. Lupu","doi":"10.1109/CBMI.2015.7153634","DOIUrl":null,"url":null,"abstract":"We revisit text-based image retrieval for social media, exploring the opportunities offered by statistical semantics. We assess the performance and limitation of several complementary corpus-based semantic text similarity methods in combination with word representations. We compare results with state-of-the-art text search engines. Our deep learning-based semantic retrieval methods show a statistically significant improvement in comparison to a best practice Solr search engine, at the expense of a significant increase in processing time. We provide a solution for reducing the semantic processing time up to 48% compared to the standard approach, while achieving the same performance.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We revisit text-based image retrieval for social media, exploring the opportunities offered by statistical semantics. We assess the performance and limitation of several complementary corpus-based semantic text similarity methods in combination with word representations. We compare results with state-of-the-art text search engines. Our deep learning-based semantic retrieval methods show a statistically significant improvement in comparison to a best practice Solr search engine, at the expense of a significant increase in processing time. We provide a solution for reducing the semantic processing time up to 48% compared to the standard approach, while achieving the same performance.