Evolution of hyperheuristics for the biobjective graph coloring problem using multiobjective genetic programming

Paresh Tolay, Rajeev Kumar
{"title":"Evolution of hyperheuristics for the biobjective graph coloring problem using multiobjective genetic programming","authors":"Paresh Tolay, Rajeev Kumar","doi":"10.1145/1569901.1570247","DOIUrl":null,"url":null,"abstract":"We consider a formulation of the biobjective soft graph coloring problem so as to simultaneously minimize the number of colors used as well as the number of edges that connect vertices of the same color. We aim to evolve hyperheuristics for this class of problem using multiobjective genetic programming (MOGP). The major advantage being that these hyperheuristics can then be applied to any instance of this problem. We test the hyperheuristics on benchmark graph coloring problems, and in the absence of an actual Pareto-front, we compare the solutions obtained with existing heuristics. We then further improve the quality of hyperheuristics evolved, and try to make them closer to human-designed heuristics.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider a formulation of the biobjective soft graph coloring problem so as to simultaneously minimize the number of colors used as well as the number of edges that connect vertices of the same color. We aim to evolve hyperheuristics for this class of problem using multiobjective genetic programming (MOGP). The major advantage being that these hyperheuristics can then be applied to any instance of this problem. We test the hyperheuristics on benchmark graph coloring problems, and in the absence of an actual Pareto-front, we compare the solutions obtained with existing heuristics. We then further improve the quality of hyperheuristics evolved, and try to make them closer to human-designed heuristics.
基于多目标遗传规划的双目标图着色问题的超启发式进化
我们考虑了一种双目标软图着色问题的公式,以便同时最小化使用的颜色数量以及连接相同颜色顶点的边的数量。我们的目标是利用多目标遗传规划(MOGP)来进化这类问题的超启发式算法。主要的优点是,这些超启发式可以应用于这个问题的任何实例。我们在基准图着色问题上测试了超启发式算法,并在没有实际Pareto-front的情况下,将得到的解与现有的启发式算法进行了比较。然后我们进一步提高进化的超启发式的质量,并尝试使它们更接近人类设计的启发式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信