Meta-recommender approach using meta-knowledge

Nadia Boufardi, O. Baida, A. Sedqui, A. Lyhyaoui
{"title":"Meta-recommender approach using meta-knowledge","authors":"Nadia Boufardi, O. Baida, A. Sedqui, A. Lyhyaoui","doi":"10.1145/3128128.3128153","DOIUrl":null,"url":null,"abstract":"Generally, the user preferences change over time which implies the need to adapt the recommendation technique used in order to recommend pertinent items. For this reason, in this paper we propose a meta-recommender that follows the change of user's interests over time to propose the appropriate recommendation technique. The proposed approach is based on meta-knowledge called explanation and a hybrid approach, and has two main phases: the first phase is to fill the meta-knowledge database with explanations using a hybrid recommendation approach. In the second phase, we calculate the average of each explanation for a user to determine the recommendation technique to use.","PeriodicalId":362403,"journal":{"name":"Proceedings of the 2017 International Conference on Smart Digital Environment","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Smart Digital Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128128.3128153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, the user preferences change over time which implies the need to adapt the recommendation technique used in order to recommend pertinent items. For this reason, in this paper we propose a meta-recommender that follows the change of user's interests over time to propose the appropriate recommendation technique. The proposed approach is based on meta-knowledge called explanation and a hybrid approach, and has two main phases: the first phase is to fill the meta-knowledge database with explanations using a hybrid recommendation approach. In the second phase, we calculate the average of each explanation for a user to determine the recommendation technique to use.
使用元知识的元推荐方法
一般来说,用户偏好会随着时间的推移而变化,这意味着需要调整推荐技术,以便推荐相关的项目。因此,在本文中,我们提出了一个元推荐器,它根据用户兴趣随时间的变化来提出合适的推荐技术。提出的方法是基于元知识的解释和混合方法,主要有两个阶段:第一阶段是使用混合推荐方法向元知识数据库中填充解释。在第二阶段,我们计算每个用户解释的平均值,以确定要使用的推荐技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信