{"title":"Credit risk modeling strategies: the road to serfdom?","authors":"Dirk-Emma Baestaens","doi":"10.1002/(SICI)1099-1174(199912)8:4%3C225::AID-ISAF162%3E3.0.CO;2-V","DOIUrl":null,"url":null,"abstract":"This paper aims at presenting some practical issues in modeling default risk of a single commercial credit counterparty from the perspective of a large retail bank. We define default risk as the probability that a counterparty’s intrinsic credit quality deteriorates within a given time horizon such that contractual agreements cannot be honored. This work gives an insight into using scoring/rating models in a credit environment of a large European bank. Contrary to many banks, we did not define the segments in a first step with a view to developing the rating tools in a second step. Our approach has, to some extent, followed a different path. Iteratively, we both defined the borders for a particular segment and selected an appropriate rating tool. More particularly, customer segmentation has been carried out on the basis of various rating tools’ goodness-of-fit criteria. The topics cover customer segmentation using goodness-of-fit measures, data measurement levels and optimization algorithms, rating tool calibration to the central default tendency and communication to the end user. Copyright © 1999 John Wiley & Sons, Ltd.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-1174(199912)8:4%3C225::AID-ISAF162%3E3.0.CO;2-V","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
信用风险建模策略:通往奴役之路?
本文旨在从大型零售银行的角度,提出单个商业信贷交易对手违约风险建模的一些实际问题。我们将违约风险定义为交易对手的内在信用质量在给定的时间范围内恶化,从而导致合同协议无法履行的可能性。这项工作为在一家大型欧洲银行的信贷环境中使用评分/评级模型提供了见解。与许多银行不同的是,我们并没有在第一步就定义细分市场,以便在第二步开发评级工具。在某种程度上,我们的做法走了一条不同的道路。迭代地,我们定义了特定部分的边界,并选择了适当的评级工具。更具体地说,客户细分是在各种评级工具的合适度标准的基础上进行的。主题包括使用拟合优度测量的客户细分,数据测量水平和优化算法,评级工具校准到中心默认趋势以及与最终用户的沟通。版权所有©1999 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。