{"title":"A dynamic spectrum access scheme for cognitive radio networks","authors":"Ke-Lin Du, M. Swamy, Q. Ni","doi":"10.1109/CCECE.2009.5090174","DOIUrl":null,"url":null,"abstract":"In this paper, the dynamic spectrum access problem for cognitive radio (CR) networks is formulated as maximizing the sum channel capacity while satisfying the power budgets of individual secondary user radios as well as the SINR constraints on both the secondary and primary users. By applying the Karush-Kuhn-Tucker theorem, we derive a water-filling soluton. An iterative water-filling algorithm is proposed for implementing joint channel and power allocation in a dynamically changing set of available channels. The proposed algorithm has a complexity that increases linearly with both the number of channels and the number of users.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, the dynamic spectrum access problem for cognitive radio (CR) networks is formulated as maximizing the sum channel capacity while satisfying the power budgets of individual secondary user radios as well as the SINR constraints on both the secondary and primary users. By applying the Karush-Kuhn-Tucker theorem, we derive a water-filling soluton. An iterative water-filling algorithm is proposed for implementing joint channel and power allocation in a dynamically changing set of available channels. The proposed algorithm has a complexity that increases linearly with both the number of channels and the number of users.