Divide-and-Conquer Federated Learning Under Data Heterogeneity

Pravin Chandran, Raghavendra Bhat, A. Chakravarthy, Srikanth Chandar
{"title":"Divide-and-Conquer Federated Learning Under Data Heterogeneity","authors":"Pravin Chandran, Raghavendra Bhat, A. Chakravarthy, Srikanth Chandar","doi":"10.5121/csit.2021.111302","DOIUrl":null,"url":null,"abstract":"Federated Learning allows training of data stored in distributed devices without the need for centralizing training-data, thereby maintaining data-privacy. Addressing the ability to handle data heterogeneity (non-identical and independent distribution or non-IID) is a key enabler for the wider deployment of Federated Learning. In this paper, we propose a novel Divide-andConquer training methodology that enables the use of the popular FedAvg aggregation algorithm by over-coming the acknowledged FedAvg limitations in non-IID environments. We propose a novel use of Cosine-distance based Weight Divergence metric to determine the exact point where a Deep Learning network can be divided into class-agnostic initial layers and class-specific deep layers for performing a Divide and Conquer training. We show that the methodology achieves trained-model accuracy at-par with (and in certain cases exceeding) the numbers achieved by state-of-the-art algorithms like FedProx, FedMA, etc. Also, we show that this methodology leads to compute and/or bandwidth optimizations under certain documented conditions.","PeriodicalId":104179,"journal":{"name":"AI, Machine Learning and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI, Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.111302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning allows training of data stored in distributed devices without the need for centralizing training-data, thereby maintaining data-privacy. Addressing the ability to handle data heterogeneity (non-identical and independent distribution or non-IID) is a key enabler for the wider deployment of Federated Learning. In this paper, we propose a novel Divide-andConquer training methodology that enables the use of the popular FedAvg aggregation algorithm by over-coming the acknowledged FedAvg limitations in non-IID environments. We propose a novel use of Cosine-distance based Weight Divergence metric to determine the exact point where a Deep Learning network can be divided into class-agnostic initial layers and class-specific deep layers for performing a Divide and Conquer training. We show that the methodology achieves trained-model accuracy at-par with (and in certain cases exceeding) the numbers achieved by state-of-the-art algorithms like FedProx, FedMA, etc. Also, we show that this methodology leads to compute and/or bandwidth optimizations under certain documented conditions.
数据异构下的分而治之联邦学习
联邦学习允许训练存储在分布式设备中的数据,而不需要集中训练数据,从而维护数据隐私。解决处理数据异构性(非相同和独立分布或非iid)的能力是联邦学习更广泛部署的关键推动因素。在本文中,我们提出了一种新的分而治之的训练方法,通过克服公认的fedag在非iid环境中的限制,可以使用流行的fedag聚合算法。我们提出了一种基于余弦距离的权重散度度量的新用法,以确定深度学习网络可以分为与类别无关的初始层和特定于类别的深层的确切点,以执行分而治之的训练。我们表明,该方法达到的训练模型精度与(在某些情况下超过)最先进的算法(如FedProx, FedMA等)所达到的数字相当。此外,我们还展示了这种方法可以在特定的文档条件下实现计算和/或带宽优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信