Estimation of Bayesian network algorithm with GA searching for better network structure

H. Handa, O. Katai
{"title":"Estimation of Bayesian network algorithm with GA searching for better network structure","authors":"H. Handa, O. Katai","doi":"10.1109/ICNNSP.2003.1279302","DOIUrl":null,"url":null,"abstract":"Estimation of Bayesian network algorithms, which adopt Bayesian networks as the probabilistic model were one of the most sophisticated algorithms in the estimation of distribution algorithms. However the estimation of Bayesian network is key topic of this algorithm, conventional EBNAs adopt greedy searches to search for better network structures. In this paper, we propose a new EBNA, which adopts genetic algorithm to search the structure of Bayesian network. In order to reduce the computational complexity of estimating better network structures, we elaborates the fitness function of the GA module, based upon the synchronicity of specific pattern in the selected individuals. Several computational simulations on multidimensional knapsack problems show us the effectiveness of the proposed method.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Estimation of Bayesian network algorithms, which adopt Bayesian networks as the probabilistic model were one of the most sophisticated algorithms in the estimation of distribution algorithms. However the estimation of Bayesian network is key topic of this algorithm, conventional EBNAs adopt greedy searches to search for better network structures. In this paper, we propose a new EBNA, which adopts genetic algorithm to search the structure of Bayesian network. In order to reduce the computational complexity of estimating better network structures, we elaborates the fitness function of the GA module, based upon the synchronicity of specific pattern in the selected individuals. Several computational simulations on multidimensional knapsack problems show us the effectiveness of the proposed method.
贝叶斯网络估计算法结合遗传算法搜索更好的网络结构
贝叶斯网络估计算法采用贝叶斯网络作为概率模型,是分布估计算法中最复杂的算法之一。然而,贝叶斯网络的估计是该算法的关键问题,传统的ebna采用贪婪搜索来搜索更好的网络结构。在本文中,我们提出了一种新的EBNA,它采用遗传算法搜索贝叶斯网络的结构。为了降低估计更好网络结构的计算复杂度,我们根据所选个体中特定模式的同步性,详细阐述了遗传算法模块的适应度函数。对多维背包问题的计算仿真表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信