Hadamard difference sets and related combinatorial objects in groups of order 144

Tanja Vucicic
{"title":"Hadamard difference sets and related combinatorial objects in groups of order 144","authors":"Tanja Vucicic","doi":"10.21857/ypn4oc88w9","DOIUrl":null,"url":null,"abstract":"In this paper we address an appealing and so far not completed combinatorial problem of difference set (DS) existence in groups of order 144. We apply our recently established method for DS construction which proves to be very efficient. The result is more than 5000 inequivalent (144, 66, 30) DSes obtained in 131 groups of order 144. The number of nonisomorphic symmetric designs rising from them is 1364. Using the obtained DSes as a source, new regular (144, 66, 30, 30) and (144, 65, 28, 30) partial difference sets are constructed, together with the corresponding strongly regular graphs. 43 non-isomorphic graphs of valency 66 are obtained and 78 of valency 65. The full automorphism groups of these graphs, as well as those of symmetric designs, are explored using the software package Magma.","PeriodicalId":269525,"journal":{"name":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21857/ypn4oc88w9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we address an appealing and so far not completed combinatorial problem of difference set (DS) existence in groups of order 144. We apply our recently established method for DS construction which proves to be very efficient. The result is more than 5000 inequivalent (144, 66, 30) DSes obtained in 131 groups of order 144. The number of nonisomorphic symmetric designs rising from them is 1364. Using the obtained DSes as a source, new regular (144, 66, 30, 30) and (144, 65, 28, 30) partial difference sets are constructed, together with the corresponding strongly regular graphs. 43 non-isomorphic graphs of valency 66 are obtained and 78 of valency 65. The full automorphism groups of these graphs, as well as those of symmetric designs, are explored using the software package Magma.
144阶群中的Hadamard差分集及相关组合对象
本文讨论了144阶群中差分集的存在性问题,这是一个很有吸引力但尚未完成的组合问题。我们将我们最近建立的方法应用于DS的构建,证明了它是非常有效的。结果在131组144阶中得到了5000多个不相等(144,66,30)的微分方程。由此产生的非同构对称设计有1364种。以得到的微分方程为源,构造了新的正则(144,66,30,30)和(144,65,28,30)偏差分集,并构造了相应的强正则图。得到66价的非同构图43个,65价的非同构图78个。利用Magma软件研究了这些图的完全自同构群以及对称图的自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信