M. Berns, Anika Wolter, C. Bührer, S. Endesfelder, T. Kerner
{"title":"Isoflurane but not Fentanyl Causes Apoptosis in Immature Primary Neuronal Cells","authors":"M. Berns, Anika Wolter, C. Bührer, S. Endesfelder, T. Kerner","doi":"10.2174/1874321801711010039","DOIUrl":null,"url":null,"abstract":"Received: December 29, 2016 Revised: March 03, 2017 Accepted: March 09, 2017 Abstract: Background: Anaesthetics are widely used in new-borns and preterm infants, although it is known that they may adversely affect the developing brain. Objective: We assessed the impact of the volatile anaesthetic, isoflurane, and the intravenous analgesic, fentanyl, on immature and mature embryonic neuronal cells. Methods: Primary neuronal cultures from embryonic rats (E18) cultured for 5 (immature) or 15 days (mature) in vitro (DIV), respectively, were exposed to isoflurane (1.5 Vol.%) or fentanyl (0.8 200 ng/ml) for 24 hours. Experiments were repeated in the presence of the γamino butyric acid-A (GABAA) receptor antagonists, bicuculline or picrotoxin (0.1 mmol/l), or the pancaspase inhibitor zVAD-fmk (20 nmol/l). Cell viability was assessed by methyltetrazolium (MTT) metabolism or lactate dehydrogenase (LDH) release. Results: Isoflurane reduced cell viability significantly in primary neuronal cells cultured for 5 DIV (Δ MTT -28 ±13%, Δ LDH +143 ±15%). Incubation with bicuculline, picrotoxin or zVAD-fmk protected the cells mostly from isoflurane toxicity. After 15 DIV, cell viability was not reduced by isoflurane. Viability of primary neurons cultured for 5 DIV did not change with fentanyl over the wide range of concentrations tested. Conclusion: Immature primary neurons may undergo apoptosis following exposure to isoflurane but are unaffected by fentanyl. Mature primary neurons were not affected by isoflurane exposure.","PeriodicalId":272376,"journal":{"name":"The Open Anesthesiology Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Anesthesiology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874321801711010039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Received: December 29, 2016 Revised: March 03, 2017 Accepted: March 09, 2017 Abstract: Background: Anaesthetics are widely used in new-borns and preterm infants, although it is known that they may adversely affect the developing brain. Objective: We assessed the impact of the volatile anaesthetic, isoflurane, and the intravenous analgesic, fentanyl, on immature and mature embryonic neuronal cells. Methods: Primary neuronal cultures from embryonic rats (E18) cultured for 5 (immature) or 15 days (mature) in vitro (DIV), respectively, were exposed to isoflurane (1.5 Vol.%) or fentanyl (0.8 200 ng/ml) for 24 hours. Experiments were repeated in the presence of the γamino butyric acid-A (GABAA) receptor antagonists, bicuculline or picrotoxin (0.1 mmol/l), or the pancaspase inhibitor zVAD-fmk (20 nmol/l). Cell viability was assessed by methyltetrazolium (MTT) metabolism or lactate dehydrogenase (LDH) release. Results: Isoflurane reduced cell viability significantly in primary neuronal cells cultured for 5 DIV (Δ MTT -28 ±13%, Δ LDH +143 ±15%). Incubation with bicuculline, picrotoxin or zVAD-fmk protected the cells mostly from isoflurane toxicity. After 15 DIV, cell viability was not reduced by isoflurane. Viability of primary neurons cultured for 5 DIV did not change with fentanyl over the wide range of concentrations tested. Conclusion: Immature primary neurons may undergo apoptosis following exposure to isoflurane but are unaffected by fentanyl. Mature primary neurons were not affected by isoflurane exposure.