{"title":"A Random-Weighted Privacy-Preserving Distributed Algorithm for Energy Management in Microgrid with Energy Storage Devices","authors":"Feng Ye, Zheyuan Cheng, Xianghui Cao, M. Chow","doi":"10.1109/IESES45645.2020.9210675","DOIUrl":null,"url":null,"abstract":"In collaborative distributed energy management system (CoDEMS) with distributed energy storage devices (DESDs), privacy is getting more and more attention, because customer and grid may suffer losses due to unintentional privacy disclosure. In this paper, we firstly introduce the networked model, distributed energy management problem and consensus-based CoDEMS algorithm. Then, we analyze the disclosure of true power supply and demand with adding-noise privacy-preserving consensus-based distributed (APCD) algorithm. To preserve the privacy, we proposed the random-weighted privacy-preserving consensus-based collaborative distributed energy management system (RP-CoDEMS) algorithm to preserve the confidentiality of the neighborhood communication. The effectiveness of RP-CoDEMS algorithm is demonstrated by simulation.","PeriodicalId":262855,"journal":{"name":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES45645.2020.9210675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In collaborative distributed energy management system (CoDEMS) with distributed energy storage devices (DESDs), privacy is getting more and more attention, because customer and grid may suffer losses due to unintentional privacy disclosure. In this paper, we firstly introduce the networked model, distributed energy management problem and consensus-based CoDEMS algorithm. Then, we analyze the disclosure of true power supply and demand with adding-noise privacy-preserving consensus-based distributed (APCD) algorithm. To preserve the privacy, we proposed the random-weighted privacy-preserving consensus-based collaborative distributed energy management system (RP-CoDEMS) algorithm to preserve the confidentiality of the neighborhood communication. The effectiveness of RP-CoDEMS algorithm is demonstrated by simulation.