Comparison of Bi-Level Optimization Frameworks for Sizing and Control of a Hybrid Electric Vehicle

Emilia Silvas, E. Bergshoeff, T. Hofman, M. Steinbuch
{"title":"Comparison of Bi-Level Optimization Frameworks for Sizing and Control of a Hybrid Electric Vehicle","authors":"Emilia Silvas, E. Bergshoeff, T. Hofman, M. Steinbuch","doi":"10.1109/VPPC.2014.7007029","DOIUrl":null,"url":null,"abstract":"This paper discusses the integrated design problem related to determining the power specifications of the main subsystems (sizing) and the supervisory control (energy management). Different bi-level optimization methods, with the outer loop using algorithms as Genetic Algorithms, Sequential Quadratic Programming, Particle Swarm Optimization or Pattern Search (DIRECT) and the inner loop using Dynamic Programming, are benchmarked to optimally size a parallel topology of a heavy duty vehicle. Since the sizing and control of a hybrid vehicle is inherently a mixed-integer multi-objective optimization problem, the Pareto analyses are also addressed. The results shows significant fuel reduction by hybridization and engine downsizing and offer insights in the usability of these nested optimization approaches.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This paper discusses the integrated design problem related to determining the power specifications of the main subsystems (sizing) and the supervisory control (energy management). Different bi-level optimization methods, with the outer loop using algorithms as Genetic Algorithms, Sequential Quadratic Programming, Particle Swarm Optimization or Pattern Search (DIRECT) and the inner loop using Dynamic Programming, are benchmarked to optimally size a parallel topology of a heavy duty vehicle. Since the sizing and control of a hybrid vehicle is inherently a mixed-integer multi-objective optimization problem, the Pareto analyses are also addressed. The results shows significant fuel reduction by hybridization and engine downsizing and offer insights in the usability of these nested optimization approaches.
混合动力汽车尺寸与控制的双层优化框架比较
本文讨论了主要子系统功率指标的确定(选型)和监控(能量管理)的集成设计问题。采用不同的双层优化方法,外环采用遗传算法、顺序二次规划、粒子群优化或模式搜索(DIRECT)等算法,内环采用动态规划,对重型车辆的并行拓扑结构进行了优化。由于混合动力汽车的尺寸和控制本质上是一个混合整数多目标优化问题,因此本文还讨论了Pareto分析。结果表明,混合动力和发动机小型化显著降低了燃油消耗,并为这些嵌套优化方法的可用性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信