Feature covariance for human action recognition

Alexandre Perez, Hedi Tabia, D. Declercq, A. Zanotti
{"title":"Feature covariance for human action recognition","authors":"Alexandre Perez, Hedi Tabia, D. Declercq, A. Zanotti","doi":"10.1109/IPTA.2016.7820982","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for human action recognition using covariance features. Computationally efficient action features are extracted from the skeleton of the subject performing the action. They aim to capture relative positions of the joints and motion over time. These features are encoded into a compact representation using a covariance matrix. We evaluate the performance of the proposed method and demonstrate its superiority compared to related state-of-the-art methods on various datasets, including the MSR Action 3D, the MSR Daily Activity 3D and the UTKinect-Action dataset.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a novel method for human action recognition using covariance features. Computationally efficient action features are extracted from the skeleton of the subject performing the action. They aim to capture relative positions of the joints and motion over time. These features are encoded into a compact representation using a covariance matrix. We evaluate the performance of the proposed method and demonstrate its superiority compared to related state-of-the-art methods on various datasets, including the MSR Action 3D, the MSR Daily Activity 3D and the UTKinect-Action dataset.
人类动作识别的特征协方差
本文提出了一种基于协方差特征的人体动作识别新方法。从执行动作的主体的骨架中提取计算效率高的动作特征。他们的目标是捕捉关节的相对位置和随时间的运动。使用协方差矩阵将这些特征编码成紧凑的表示。我们评估了所提出的方法的性能,并在各种数据集(包括MSR Action 3D, MSR Daily Activity 3D和UTKinect-Action数据集)上展示了其与相关最先进方法相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信