Use of Compressive Sensing in Efficient Multiscale Stochastic-based Inverse Profiling of Multilayered Subsurface Targets

M. Hajebi, A. Hoorfar
{"title":"Use of Compressive Sensing in Efficient Multiscale Stochastic-based Inverse Profiling of Multilayered Subsurface Targets","authors":"M. Hajebi, A. Hoorfar","doi":"10.23919/EuCAP57121.2023.10133788","DOIUrl":null,"url":null,"abstract":"A multiresolution electromagnetic inverse scattering algorithm is proposed for reconstruction of multiple objects buried in a multilayered media, using limited amount of data. For tackling this highly nonlinear and ill-posed problem, it is required to combine different inverse profiling modalities. The proposed algorithm starts with using the total variation minimization (TVM) method to locate the objects and roughly estimate their borders. Then, an iterative multi-scale approach (IMSA) is implemented to confine the investigation domain (ID) to the detected objects regions, step by step. Using this approach, the resolution can be enhanced without increasing the number of unknowns. As the inverse solver, the robust stochastic optimization technique of Covariance Matrix Adaption Evolution Strategy (CMA-ES) is utilized in each step. The presented numerical results indicate the efficiency of the proposed algorithm in quantitative profiling of multiple objects, using limited amount of data.","PeriodicalId":103360,"journal":{"name":"2023 17th European Conference on Antennas and Propagation (EuCAP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EuCAP57121.2023.10133788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A multiresolution electromagnetic inverse scattering algorithm is proposed for reconstruction of multiple objects buried in a multilayered media, using limited amount of data. For tackling this highly nonlinear and ill-posed problem, it is required to combine different inverse profiling modalities. The proposed algorithm starts with using the total variation minimization (TVM) method to locate the objects and roughly estimate their borders. Then, an iterative multi-scale approach (IMSA) is implemented to confine the investigation domain (ID) to the detected objects regions, step by step. Using this approach, the resolution can be enhanced without increasing the number of unknowns. As the inverse solver, the robust stochastic optimization technique of Covariance Matrix Adaption Evolution Strategy (CMA-ES) is utilized in each step. The presented numerical results indicate the efficiency of the proposed algorithm in quantitative profiling of multiple objects, using limited amount of data.
压缩感知在多层地下目标多尺度随机反剖面中的应用
提出了一种多分辨率电磁反散射算法,用于在有限数据量下多层介质中埋藏的多个目标的重建。为了解决这一高度非线性和病态的问题,需要结合不同的逆剖面模型。该算法首先利用总变差最小化(total variation minimization, TVM)方法对目标进行定位并粗略估计其边界。然后,采用迭代多尺度方法(IMSA)逐步将调查域(ID)限制在被检测目标区域;使用这种方法,可以在不增加未知量的情况下提高分辨率。作为逆求解器,每一步都采用了协方差矩阵自适应进化策略(CMA-ES)的鲁棒随机优化技术。数值结果表明,该算法在使用有限数据量的情况下,对多目标进行定量轮廓分析是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信