Can we build language-independent OCR using LSTM networks?

MOCR '13 Pub Date : 2013-08-24 DOI:10.1145/2505377.2505394
A. Ul-Hasan, T. Breuel
{"title":"Can we build language-independent OCR using LSTM networks?","authors":"A. Ul-Hasan, T. Breuel","doi":"10.1145/2505377.2505394","DOIUrl":null,"url":null,"abstract":"Language models or recognition dictionaries are usually considered an essential step in OCR. However, using a language model complicates training of OCR systems, and it also narrows the range of texts that an OCR system can be used with. Recent results have shown that Long Short-Term Memory (LSTM) based OCR yields low error rates even without language modeling. In this paper, we explore the question to what extent LSTM models can be used for multilingual OCR without the use of language models. To do this, we measure cross-language performance of LSTM models trained on different languages. LSTM models show good promise to be used for language-independent OCR. The recognition errors are very low (around 1%) without using any language model or dictionary correction.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Language models or recognition dictionaries are usually considered an essential step in OCR. However, using a language model complicates training of OCR systems, and it also narrows the range of texts that an OCR system can be used with. Recent results have shown that Long Short-Term Memory (LSTM) based OCR yields low error rates even without language modeling. In this paper, we explore the question to what extent LSTM models can be used for multilingual OCR without the use of language models. To do this, we measure cross-language performance of LSTM models trained on different languages. LSTM models show good promise to be used for language-independent OCR. The recognition errors are very low (around 1%) without using any language model or dictionary correction.
我们可以使用LSTM网络构建语言无关的OCR吗?
语言模型或识别字典通常被认为是OCR的重要步骤。然而,使用语言模型使OCR系统的训练变得复杂,并且它也缩小了OCR系统可以使用的文本范围。最近的研究结果表明,即使没有语言建模,基于长短期记忆(LSTM)的OCR也能产生较低的错误率。在本文中,我们探讨了在不使用语言模型的情况下LSTM模型在多大程度上可以用于多语言OCR的问题。为此,我们测量了在不同语言上训练的LSTM模型的跨语言性能。LSTM模型在用于语言无关OCR方面表现出良好的前景。在不使用任何语言模型或字典校正的情况下,识别误差非常低(约1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信