{"title":"Can we build language-independent OCR using LSTM networks?","authors":"A. Ul-Hasan, T. Breuel","doi":"10.1145/2505377.2505394","DOIUrl":null,"url":null,"abstract":"Language models or recognition dictionaries are usually considered an essential step in OCR. However, using a language model complicates training of OCR systems, and it also narrows the range of texts that an OCR system can be used with. Recent results have shown that Long Short-Term Memory (LSTM) based OCR yields low error rates even without language modeling. In this paper, we explore the question to what extent LSTM models can be used for multilingual OCR without the use of language models. To do this, we measure cross-language performance of LSTM models trained on different languages. LSTM models show good promise to be used for language-independent OCR. The recognition errors are very low (around 1%) without using any language model or dictionary correction.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Language models or recognition dictionaries are usually considered an essential step in OCR. However, using a language model complicates training of OCR systems, and it also narrows the range of texts that an OCR system can be used with. Recent results have shown that Long Short-Term Memory (LSTM) based OCR yields low error rates even without language modeling. In this paper, we explore the question to what extent LSTM models can be used for multilingual OCR without the use of language models. To do this, we measure cross-language performance of LSTM models trained on different languages. LSTM models show good promise to be used for language-independent OCR. The recognition errors are very low (around 1%) without using any language model or dictionary correction.