ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data

Can Liu, Yun Han, Ruike Jiang, Xiaoru Yuan
{"title":"ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data","authors":"Can Liu, Yun Han, Ruike Jiang, Xiaoru Yuan","doi":"10.1109/PacificVis52677.2021.00010","DOIUrl":null,"url":null,"abstract":"We propose an automatic pipeline to generate visualization with annotations to answer natural-language questions raised by the public on tabular data. With a pre-trained language representation model, the input natural language questions and table headers are first encoded into vectors. According to these vectors, a multi-task end-to-end deep neural network extracts related data areas and corresponding aggregation type. We present the result with carefully designed visualization and annotations for different attribute types and tasks. We conducted a comparison experiment with state-of-the-art works and the best commercial tools. The results show that our method outperforms those works with higher accuracy and more effective visualization.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We propose an automatic pipeline to generate visualization with annotations to answer natural-language questions raised by the public on tabular data. With a pre-trained language representation model, the input natural language questions and table headers are first encoded into vectors. According to these vectors, a multi-task end-to-end deep neural network extracts related data areas and corresponding aggregation type. We present the result with carefully designed visualization and annotations for different attribute types and tasks. We conducted a comparison experiment with state-of-the-art works and the best commercial tools. The results show that our method outperforms those works with higher accuracy and more effective visualization.
导师:关于表格数据的自然语言问题的自动可视化答案
我们提出了一个自动管道来生成带有注释的可视化,以回答公众对表格数据提出的自然语言问题。使用预训练的语言表示模型,首先将输入的自然语言问题和表头编码为向量。根据这些向量,多任务端到端深度神经网络提取相关数据区域和相应的聚集类型。我们为不同的属性类型和任务提供了精心设计的可视化和注释。我们用最先进的作品和最好的商业工具进行了对比实验。结果表明,该方法具有更高的精度和更有效的可视化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信