Feature tracking in VR for cumulus cloud life-cycle studies

E. J. Griffith, F. Post, M. Koutek, T. Heus, H. Jonker
{"title":"Feature tracking in VR for cumulus cloud life-cycle studies","authors":"E. J. Griffith, F. Post, M. Koutek, T. Heus, H. Jonker","doi":"10.2312/EGVE/IPT_EGVE2005/121-128","DOIUrl":null,"url":null,"abstract":"Feature tracking in large data sets is traditionally an off-line, batch processing operation while virtual reality typically focuses on highly interactive tasks and applications. This paper presents an approach that uses a combination of off-line preprocessing and interactive visualization in VR to simplify and speed up the identification of interesting features for further study. We couch the discussion in terms of our collaborative research on using virtual reality for cumulus cloud life-cycle studies, where selecting suitable clouds for study is simple for the skilled observer but difficult to formalize. The preprocessing involves identifying individual clouds within the data set through a 4D connected components algorithm, and then saving isosurface, bounding box, and volume information. This information is then interactively visualized in our VR Cloud Explorer with various tools and information displays to identify the most interesting clouds. In a small pilot study, reasonable performance, both in the preprocessing phase and the visualization phase, has been measured.","PeriodicalId":210571,"journal":{"name":"International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGVE/IPT_EGVE2005/121-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Feature tracking in large data sets is traditionally an off-line, batch processing operation while virtual reality typically focuses on highly interactive tasks and applications. This paper presents an approach that uses a combination of off-line preprocessing and interactive visualization in VR to simplify and speed up the identification of interesting features for further study. We couch the discussion in terms of our collaborative research on using virtual reality for cumulus cloud life-cycle studies, where selecting suitable clouds for study is simple for the skilled observer but difficult to formalize. The preprocessing involves identifying individual clouds within the data set through a 4D connected components algorithm, and then saving isosurface, bounding box, and volume information. This information is then interactively visualized in our VR Cloud Explorer with various tools and information displays to identify the most interesting clouds. In a small pilot study, reasonable performance, both in the preprocessing phase and the visualization phase, has been measured.
在VR特征跟踪的积云生命周期研究
大型数据集的特征跟踪传统上是离线的批处理操作,而虚拟现实通常侧重于高度交互的任务和应用程序。本文提出了一种将虚拟现实中的离线预处理和交互式可视化相结合的方法,以简化和加快对有趣特征的识别以供进一步研究。我们将讨论我们在使用虚拟现实进行积云生命周期研究方面的合作研究,其中选择合适的云进行研究对于熟练的观察者来说很简单,但很难形式化。预处理包括通过4D连接组件算法识别数据集中的单个云,然后保存等值面、边界框和体信息。这些信息然后在我们的VR云资源管理器与各种工具和信息显示交互可视化,以识别最有趣的云。在一个小型的试点研究中,在预处理阶段和可视化阶段都测量了合理的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信