Palaniappan S, S. V. Sai Sripriya, Amalladinna Rama Lalitha Pranathi, M. Muthulakshmi
{"title":"Diagnosis of Acute Respiratory Syndromes from X-Rays using Customised CNN Architecture","authors":"Palaniappan S, S. V. Sai Sripriya, Amalladinna Rama Lalitha Pranathi, M. Muthulakshmi","doi":"10.1109/IICAIET55139.2022.9936750","DOIUrl":null,"url":null,"abstract":"This work presents the diagnosis of various acute respiratory syndromes using customized CNN architecture from X-ray images. Complications of viral pneumonia results in influenza and COVID-19. The respiratory syndromes occur due to bacterial and fungal infections as well. Hence, the objective was to use customized CNN architecture to perform a multi-class pneumonia classification. VGG16 architecture is carefully trained for pneumonia classification with ReLU activation and categorical cross-entropy loss function. The proposed model is efficient and robust and yielded 97.87% accuracy on the train set and 90% accuracy on the test set. The experimental results suggest that the model efficiently detects all sorts of lung diseases, including COVID 19.","PeriodicalId":142482,"journal":{"name":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET55139.2022.9936750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents the diagnosis of various acute respiratory syndromes using customized CNN architecture from X-ray images. Complications of viral pneumonia results in influenza and COVID-19. The respiratory syndromes occur due to bacterial and fungal infections as well. Hence, the objective was to use customized CNN architecture to perform a multi-class pneumonia classification. VGG16 architecture is carefully trained for pneumonia classification with ReLU activation and categorical cross-entropy loss function. The proposed model is efficient and robust and yielded 97.87% accuracy on the train set and 90% accuracy on the test set. The experimental results suggest that the model efficiently detects all sorts of lung diseases, including COVID 19.