Sparse and Semi-supervised Visual Mapping with the S^3GP

Oliver Williams, A. Blake, R. Cipolla
{"title":"Sparse and Semi-supervised Visual Mapping with the S^3GP","authors":"Oliver Williams, A. Blake, R. Cipolla","doi":"10.1109/CVPR.2006.285","DOIUrl":null,"url":null,"abstract":"This paper is about mapping images to continuous output spaces using powerful Bayesian learning techniques. A sparse, semi-supervised Gaussian process regression model (S3GP) is introduced which learns a mapping using only partially labelled training data. We show that sparsity bestows efficiency on the S3GP which requires minimal CPU utilization for real-time operation; the predictions of uncertainty made by the S3GP are more accurate than those of other models leading to considerable performance improvements when combined with a probabilistic filter; and the ability to learn from semi-supervised data simplifies the process of collecting training data. The S3GP uses a mixture of different image features: this is also shown to improve the accuracy and consistency of the mapping. A major application of this work is its use as a gaze tracking system in which images of a human eye are mapped to screen coordinates: in this capacity our approach is efficient, accurate and versatile.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

Abstract

This paper is about mapping images to continuous output spaces using powerful Bayesian learning techniques. A sparse, semi-supervised Gaussian process regression model (S3GP) is introduced which learns a mapping using only partially labelled training data. We show that sparsity bestows efficiency on the S3GP which requires minimal CPU utilization for real-time operation; the predictions of uncertainty made by the S3GP are more accurate than those of other models leading to considerable performance improvements when combined with a probabilistic filter; and the ability to learn from semi-supervised data simplifies the process of collecting training data. The S3GP uses a mixture of different image features: this is also shown to improve the accuracy and consistency of the mapping. A major application of this work is its use as a gaze tracking system in which images of a human eye are mapped to screen coordinates: in this capacity our approach is efficient, accurate and versatile.
基于S^3GP的稀疏半监督视觉映射
本文是关于使用强大的贝叶斯学习技术将图像映射到连续输出空间。介绍了一种稀疏的半监督高斯过程回归模型(S3GP),该模型仅使用部分标记的训练数据学习映射。我们表明,稀疏性为S3GP带来了效率,这需要最小的CPU利用率来进行实时操作;S3GP对不确定性的预测比其他模型更准确,当与概率过滤器结合使用时,可以显著提高性能;从半监督数据中学习的能力简化了收集训练数据的过程。S3GP使用不同图像特征的混合:这也表明可以提高映射的准确性和一致性。这项工作的一个主要应用是将其用作注视跟踪系统,在该系统中,人眼的图像被映射到屏幕坐标上:在这种情况下,我们的方法是高效、准确和通用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信