Nonlinear Observer Fault Detection for a Multivariable Process Using a Learning Methodology

Haiying Qi, A. Ertiame, Kingsley Madubuike, Dingli Yu, J. Gomm
{"title":"Nonlinear Observer Fault Detection for a Multivariable Process Using a Learning Methodology","authors":"Haiying Qi, A. Ertiame, Kingsley Madubuike, Dingli Yu, J. Gomm","doi":"10.23919/IConAC.2018.8749081","DOIUrl":null,"url":null,"abstract":"A fault diagnosis method for nonlinear systems is developed in this paper using a designed nonlinear state observer. In the observer system a neural network is utilized to estimate the possible fault on-line. It is proved that when the nonlinear observer output converges to the system states, the on-line estimator will converge to the time varying faults. In this way, not only that the occurring fault can be detected, the size and waveform of the fault can be estimated to achieve fault identification, which is very useful when the fault tolerant control will be further developed. The developed fault diagnosis method is applied to a continuous stirred tank reactor (CSTR) process with some simulated faults. Simulation results demonstrate the effectiveness of the fault diagnosis method.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fault diagnosis method for nonlinear systems is developed in this paper using a designed nonlinear state observer. In the observer system a neural network is utilized to estimate the possible fault on-line. It is proved that when the nonlinear observer output converges to the system states, the on-line estimator will converge to the time varying faults. In this way, not only that the occurring fault can be detected, the size and waveform of the fault can be estimated to achieve fault identification, which is very useful when the fault tolerant control will be further developed. The developed fault diagnosis method is applied to a continuous stirred tank reactor (CSTR) process with some simulated faults. Simulation results demonstrate the effectiveness of the fault diagnosis method.
基于学习方法的多变量过程非线性观测器故障检测
本文提出了一种利用设计好的非线性状态观测器进行非线性系统故障诊断的方法。在观测器系统中,利用神经网络在线估计可能出现的故障。证明了当非线性观测器输出收敛到系统状态时,在线估计器将收敛到时变故障。这样不仅可以检测到发生的故障,还可以估计出故障的大小和波形,从而实现故障识别,对进一步发展容错控制具有重要意义。将所建立的故障诊断方法应用于具有模拟故障的连续搅拌槽式反应器(CSTR)。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信