Chinese word semantic relation classification based on multiple knowledge resources

Fanqing Meng, Yuteng Zhang, Wenpeng Lu, Weiyu Zhang, Jinyong Cheng
{"title":"Chinese word semantic relation classification based on multiple knowledge resources","authors":"Fanqing Meng, Yuteng Zhang, Wenpeng Lu, Weiyu Zhang, Jinyong Cheng","doi":"10.1109/SPAC.2017.8304307","DOIUrl":null,"url":null,"abstract":"Chinese word semantic relation classification is an important and challenging task in the field of natural language processing. This paper describes our method to classify Chinese word semantic relation based on multiple knowledge resources at NLPCC Evaluation. Firstly, given pairs of Chinese words, we try to utilize different knowledge resources, such as Tongyici Cilin and HowNet, to classify them into four kinds of semantic relations, which are synonym, antonym, hyponym and meronym. Secondly, for those uncovered pairs of Chinese words, we translate them into English, then classify them with the help of English knowledge resources, such as WordNet and BabelNet. Experiments on the evaluation dataset at NLPCC 2017 demonstrate that the method can achieve the macro-averaged F1-Score of 0.634 and precision of 0.875. Among all of the participants, the method get the best precision, which shows its superiority over other methods on precision.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chinese word semantic relation classification is an important and challenging task in the field of natural language processing. This paper describes our method to classify Chinese word semantic relation based on multiple knowledge resources at NLPCC Evaluation. Firstly, given pairs of Chinese words, we try to utilize different knowledge resources, such as Tongyici Cilin and HowNet, to classify them into four kinds of semantic relations, which are synonym, antonym, hyponym and meronym. Secondly, for those uncovered pairs of Chinese words, we translate them into English, then classify them with the help of English knowledge resources, such as WordNet and BabelNet. Experiments on the evaluation dataset at NLPCC 2017 demonstrate that the method can achieve the macro-averaged F1-Score of 0.634 and precision of 0.875. Among all of the participants, the method get the best precision, which shows its superiority over other methods on precision.
基于多知识资源的汉语词语义关系分类
汉语词语义关系分类是自然语言处理领域的一项重要而富有挑战性的任务。本文介绍了在NLPCC评价中基于多知识资源的汉语词语义关系分类方法。首先,我们尝试利用不同的知识资源,如同义词林和知网,将汉语词汇对分为同义词、反义词、下义和反义四种语义关系。其次,将未发现的汉语词汇对翻译成英语,并借助英语知识资源(如WordNet和BabelNet)进行分类。在NLPCC 2017评估数据集上的实验表明,该方法可以实现宏观平均F1-Score为0.634,精度为0.875。在所有参与者中,该方法获得了最好的精度,显示出其精度优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信