Analyzing the Impact of Protein Representation on Mining Structural Patterns from Protein Data

S. Albert, G. Czibula, Mihai Teletin
{"title":"Analyzing the Impact of Protein Representation on Mining Structural Patterns from Protein Data","authors":"S. Albert, G. Czibula, Mihai Teletin","doi":"10.1109/SACI.2018.8440984","DOIUrl":null,"url":null,"abstract":"Proteins have essential roles in the biological processes of living organisms by contributing to maintain cellular environments. Understanding the conformational transitions of proteins may help identifying situations when incorrect folding or mutations can occur and thus, it may contribute to inhibit possible uncontrolled behaviour. In this paper we are performing a study on how different protein representations impact the process of mining relevant patterns from protein related data. Two representations are used for the proteins, one using the structural alphabet and the second using the relative solvent accessibility values of the amino acids from the proteins' primary structure. Using these representations, two case studies are performed to emphasize the effectiveness of using the proposed protein representations to unsupervisedly learn structural patterns from on a protein data set.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Proteins have essential roles in the biological processes of living organisms by contributing to maintain cellular environments. Understanding the conformational transitions of proteins may help identifying situations when incorrect folding or mutations can occur and thus, it may contribute to inhibit possible uncontrolled behaviour. In this paper we are performing a study on how different protein representations impact the process of mining relevant patterns from protein related data. Two representations are used for the proteins, one using the structural alphabet and the second using the relative solvent accessibility values of the amino acids from the proteins' primary structure. Using these representations, two case studies are performed to emphasize the effectiveness of using the proposed protein representations to unsupervisedly learn structural patterns from on a protein data set.
分析蛋白质表示对蛋白质数据结构模式挖掘的影响
蛋白质在生物体的生物过程中起着至关重要的作用,有助于维持细胞环境。了解蛋白质的构象转变可能有助于识别不正确折叠或突变可能发生的情况,从而有助于抑制可能的不受控制的行为。在本文中,我们正在研究不同的蛋白质表示如何影响从蛋白质相关数据中挖掘相关模式的过程。两种表示用于蛋白质,一种使用结构字母,另一种使用蛋白质初级结构中氨基酸的相对溶剂可及性值。使用这些表示,进行了两个案例研究,以强调使用所提出的蛋白质表示从蛋白质数据集中无监督地学习结构模式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信