Juan Sebastián Casallas, J. Oliver, Jonathan W. Kelly, F. Mérienne, S. Garbaya
{"title":"Using relative head and hand-target features to predict intention in 3D moving-target selection","authors":"Juan Sebastián Casallas, J. Oliver, Jonathan W. Kelly, F. Mérienne, S. Garbaya","doi":"10.1109/VR.2014.6802050","DOIUrl":null,"url":null,"abstract":"Selection of moving targets is a common, yet complex task in human-computer interaction (HCI) and virtual reality (VR). Predicting user intention may be beneficial to address the challenges inherent in interaction techniques for moving-target selection. This article extends previous models by integrating relative head-target and hand-target features to predict intended moving targets. The features are calculated in a time window ending at roughly two-thirds of the total target selection time and evaluated using decision trees. With two targets, this model is able to predict user choice with up to ~ 72% accuracy on general moving-target selection tasks and up to ~ 78% by also including task-related target properties.","PeriodicalId":408559,"journal":{"name":"2014 IEEE Virtual Reality (VR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Virtual Reality (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2014.6802050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Selection of moving targets is a common, yet complex task in human-computer interaction (HCI) and virtual reality (VR). Predicting user intention may be beneficial to address the challenges inherent in interaction techniques for moving-target selection. This article extends previous models by integrating relative head-target and hand-target features to predict intended moving targets. The features are calculated in a time window ending at roughly two-thirds of the total target selection time and evaluated using decision trees. With two targets, this model is able to predict user choice with up to ~ 72% accuracy on general moving-target selection tasks and up to ~ 78% by also including task-related target properties.