Improved Single Image Dehazing Using Geometry

Peter Carr, R. Hartley
{"title":"Improved Single Image Dehazing Using Geometry","authors":"Peter Carr, R. Hartley","doi":"10.1109/DICTA.2009.25","DOIUrl":null,"url":null,"abstract":"Images captured in foggy weather conditions exhibit losses in quality which are dependent on distance. If the depth and atmospheric conditions are known, one can enhance the images (to some degree) by compensating for the effects of the fog. Recently, several investigations have presented methods for recovering depth maps using only the information contained in a single foggy image. Each technique estimates the depth of each pixel independently, and assumes neighbouring pixels will have similar depths. In this work, we employ the fact that images containing fog are captured from outdoor cameras. As a result, the scene geometry is usually dominated by a ground plane. More importantly, objects which appear towards the top of the image are usually further away. We show how this preference (implemented as a soft constraint) is compatible with the alpha-expansion optimization technique and illustrate how it can be used to improve the robustness of any single image dehazing technique.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

Images captured in foggy weather conditions exhibit losses in quality which are dependent on distance. If the depth and atmospheric conditions are known, one can enhance the images (to some degree) by compensating for the effects of the fog. Recently, several investigations have presented methods for recovering depth maps using only the information contained in a single foggy image. Each technique estimates the depth of each pixel independently, and assumes neighbouring pixels will have similar depths. In this work, we employ the fact that images containing fog are captured from outdoor cameras. As a result, the scene geometry is usually dominated by a ground plane. More importantly, objects which appear towards the top of the image are usually further away. We show how this preference (implemented as a soft constraint) is compatible with the alpha-expansion optimization technique and illustrate how it can be used to improve the robustness of any single image dehazing technique.
改进的单图像去雾使用几何
在有雾的天气条件下拍摄的图像质量会随着距离的远近而下降。如果深度和大气条件已知,人们可以通过补偿雾的影响来增强图像(在某种程度上)。最近,一些研究提出了仅使用单个雾天图像中包含的信息来恢复深度图的方法。每种技术都独立地估计每个像素的深度,并假设相邻像素具有相似的深度。在这项工作中,我们采用了一个事实,即包含雾的图像是从室外相机捕获的。因此,场景几何体通常由地平面主导。更重要的是,出现在图像顶部的物体通常更远。我们展示了这种偏好(作为软约束实现)如何与α -扩展优化技术兼容,并说明了如何使用它来提高任何单个图像去雾技术的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信