Intelligent Space-Air-Ground Collaborative Computing Networks

Shahnila Rahim, Limei Peng
{"title":"Intelligent Space-Air-Ground Collaborative Computing Networks","authors":"Shahnila Rahim, Limei Peng","doi":"10.1109/IOTM.001.2200275","DOIUrl":null,"url":null,"abstract":"The space-air-ground collaborative computing networks (SAGCCN) are promising in providing full connectivity for 5G-Advanced and 6G-driven IoT applications. In particular, the SAGCCN can flexibly integrate the communication and computation resources from terrestrial to the sky, thus providing a viable solution for seamless communication and computation services for massive IoT applications. This article discusses the intelligent technologies required to enable full intelligence in data collection and offloading in SAGCCN. In particular, several machine learning-based trajectory planning scenarios are discussed in detail. Finally, this article explores the challenges and future research opportunities in the area of aerial computing.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2200275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The space-air-ground collaborative computing networks (SAGCCN) are promising in providing full connectivity for 5G-Advanced and 6G-driven IoT applications. In particular, the SAGCCN can flexibly integrate the communication and computation resources from terrestrial to the sky, thus providing a viable solution for seamless communication and computation services for massive IoT applications. This article discusses the intelligent technologies required to enable full intelligence in data collection and offloading in SAGCCN. In particular, several machine learning-based trajectory planning scenarios are discussed in detail. Finally, this article explores the challenges and future research opportunities in the area of aerial computing.
智能天空地协同计算网络
天空地协同计算网络(SAGCCN)有望为5G-Advanced和6g驱动的物联网应用提供全面连接。特别是,SAGCCN可以灵活整合从地面到天空的通信和计算资源,从而为大规模物联网应用的无缝通信和计算服务提供可行的解决方案。本文讨论了在SAGCCN中实现完全智能的数据收集和卸载所需的智能技术。特别是,详细讨论了几种基于机器学习的轨迹规划场景。最后,本文探讨了航空计算领域的挑战和未来的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信